We show a version of the DT/PT correspondence relating local curve counting invariants, encoding the contribution of a fixed smooth curve in a Calabi–Yau threefold. We exploit a local study of the Hilbert–Chow morphism about the cycle of a smooth curve. We compute, via Quot schemes, the global Donaldson–Thomas theory of a general Abel–Jacobi curve of genus 3.

Ricolfi A.T. (2018). The DT/PT correspondence for smooth curves. MATHEMATISCHE ZEITSCHRIFT, 290(1-2), 699-710 [10.1007/s00209-017-2037-2].

The DT/PT correspondence for smooth curves

Ricolfi A. T.
2018

Abstract

We show a version of the DT/PT correspondence relating local curve counting invariants, encoding the contribution of a fixed smooth curve in a Calabi–Yau threefold. We exploit a local study of the Hilbert–Chow morphism about the cycle of a smooth curve. We compute, via Quot schemes, the global Donaldson–Thomas theory of a general Abel–Jacobi curve of genus 3.
2018
Ricolfi A.T. (2018). The DT/PT correspondence for smooth curves. MATHEMATISCHE ZEITSCHRIFT, 290(1-2), 699-710 [10.1007/s00209-017-2037-2].
Ricolfi A.T.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/834707
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact