We show a version of the DT/PT correspondence relating local curve counting invariants, encoding the contribution of a fixed smooth curve in a Calabi–Yau threefold. We exploit a local study of the Hilbert–Chow morphism about the cycle of a smooth curve. We compute, via Quot schemes, the global Donaldson–Thomas theory of a general Abel–Jacobi curve of genus 3.
Ricolfi A.T. (2018). The DT/PT correspondence for smooth curves. MATHEMATISCHE ZEITSCHRIFT, 290(1-2), 699-710 [10.1007/s00209-017-2037-2].
The DT/PT correspondence for smooth curves
Ricolfi A. T.
2018
Abstract
We show a version of the DT/PT correspondence relating local curve counting invariants, encoding the contribution of a fixed smooth curve in a Calabi–Yau threefold. We exploit a local study of the Hilbert–Chow morphism about the cycle of a smooth curve. We compute, via Quot schemes, the global Donaldson–Thomas theory of a general Abel–Jacobi curve of genus 3.File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.