We classify coherent modules on k[x,y] of length at most 4 and supported at the origin. We compare our calculation with the motivic class of the moduli stack parametrizing such modules, extracted from the Feit–Fine formula. We observe that the natural torus action on this stack has finitely many fixed points, corresponding to connected skew Ferrers diagrams.

Moschetti R., Ricolfi A.T. (2018). On coherent sheaves of small length on the affine plane. JOURNAL OF ALGEBRA, 516, 471-489 [10.1016/j.jalgebra.2018.09.028].

On coherent sheaves of small length on the affine plane

Ricolfi A. T.
2018

Abstract

We classify coherent modules on k[x,y] of length at most 4 and supported at the origin. We compare our calculation with the motivic class of the moduli stack parametrizing such modules, extracted from the Feit–Fine formula. We observe that the natural torus action on this stack has finitely many fixed points, corresponding to connected skew Ferrers diagrams.
2018
Moschetti R., Ricolfi A.T. (2018). On coherent sheaves of small length on the affine plane. JOURNAL OF ALGEBRA, 516, 471-489 [10.1016/j.jalgebra.2018.09.028].
Moschetti R.; Ricolfi A.T.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/834672
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact