We present SubjectivITA: the first Italian corpus for subjectivity detection on news articles, with annotations at sentence and document level. Our corpus consists of 103 articles extracted from online newspapers, amounting to 1,841 sentences. We also define baselines for sentence- and document-level subjectivity detection using transformer-based and statistical classifiers. Our results suggest that sentence-level subjectivity annotations may often be sufficient to classify the whole document

Antici, F., Bolognini, L., Inajetovic, M.A., Ivasiuk, B., Galassi, A., Ruggeri, F. (2021). SubjectivITA: An Italian Corpus for Subjectivity Detection in Newspapers [10.1007/978-3-030-85251-1_4].

SubjectivITA: An Italian Corpus for Subjectivity Detection in Newspapers

Galassi, Andrea
;
Ruggeri, Federico
2021

Abstract

We present SubjectivITA: the first Italian corpus for subjectivity detection on news articles, with annotations at sentence and document level. Our corpus consists of 103 articles extracted from online newspapers, amounting to 1,841 sentences. We also define baselines for sentence- and document-level subjectivity detection using transformer-based and statistical classifiers. Our results suggest that sentence-level subjectivity annotations may often be sufficient to classify the whole document
2021
Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2021
40
52
Antici, F., Bolognini, L., Inajetovic, M.A., Ivasiuk, B., Galassi, A., Ruggeri, F. (2021). SubjectivITA: An Italian Corpus for Subjectivity Detection in Newspapers [10.1007/978-3-030-85251-1_4].
Antici, Francesco; Bolognini, Luca; Inajetovic, Matteo Antonio; Ivasiuk, Bogdan; Galassi, Andrea; Ruggeri, Federico
File in questo prodotto:
File Dimensione Formato  
_CLEF2021__SubjectivITA.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 466.99 kB
Formato Adobe PDF
466.99 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/832327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact