Abstract: Forest biodiversity is a key element to support ecosystem functions. Measuring biodiversity is a necessary step to identify critical issues and to choose interventions to be applied in order to protect it. Remote sensing provides consistent quality and standardized data, which can be used to estimate different aspects of biodiversity. The Height Variation Hypothesis (HVH) represents an indirect method for estimating species diversity in forest ecosystems from the LiDAR data, and it assumes that the higher the variation in tree height (height heterogeneity, HH), calculated through the ’Canopy Height Model’ (CHM) metric, the more complex the overall structure of the forest and the higher the tree species diversity. To date, the HVH has been tested exclusively with CHM data, assessing the HH only with a single heterogeneity index (the Rao’s Q index) without making use of any moving windows (MW) approach. In this study, the HVH has been tested in an alpine coniferous forest situated in the municipality of San Genesio/Jenesien (eastern Italian Alps) at 1100 m, characterized by the presence of 11 different tree species (mainly Pinus sylvestris, Larix decidua, Picea abies followed by Betula alba and Corylus avellana). The HH has been estimated through different heterogeneity measures described in the new R rasterdiv package using, besides the CHM, also other LiDAR metrics (as the percentile or the standard deviation of the height distribution) at various spatial resolutions and MWs (ALS LiDAR data with mean point cloud density of 2.9 point/m2 ). For each combination of parameters, and for all the considered plots, linear regressions between the Shannon’s H0 (used as tree species diversity index based on field data) and the HH have been derived. The results showed that the Rao’s Q index (singularly and through a multidimensional approach) performed generally better than the other heterogeneity indices in the assessment of the HH. The CHM and the LiDAR metrics related to the upper quantile point cloud distribution at fine resolution (2.5 m, 5 m) have shown the most important results for the assessment of the HH. The size of the used MW did not influence the general outcomes but instead, it increased when compared to the results found in the literature, where the HVH was tested without MW approach. The outcomes of this study underline that the HVH, calculated with certain heterogeneity indices and LiDAR data, can be considered a useful tool for assessing tree species diversity in considered forest ecosystems. The general results highlight the strength and importance of LiDAR data in assessing the height heterogeneity and the related biodiversity in forest ecosystems.

Tamburlin, D., Torresani, M., Tomelleri, E., Tonon, G., Rocchini, D. (2021). Testing the Height Variation Hypothesis with the R rasterdiv Package for Tree Species Diversity Estimation. REMOTE SENSING, 13(18), 1-20 [10.3390/rs13183569].

Testing the Height Variation Hypothesis with the R rasterdiv Package for Tree Species Diversity Estimation

Tonon, Giustino;Rocchini, Duccio
2021

Abstract

Abstract: Forest biodiversity is a key element to support ecosystem functions. Measuring biodiversity is a necessary step to identify critical issues and to choose interventions to be applied in order to protect it. Remote sensing provides consistent quality and standardized data, which can be used to estimate different aspects of biodiversity. The Height Variation Hypothesis (HVH) represents an indirect method for estimating species diversity in forest ecosystems from the LiDAR data, and it assumes that the higher the variation in tree height (height heterogeneity, HH), calculated through the ’Canopy Height Model’ (CHM) metric, the more complex the overall structure of the forest and the higher the tree species diversity. To date, the HVH has been tested exclusively with CHM data, assessing the HH only with a single heterogeneity index (the Rao’s Q index) without making use of any moving windows (MW) approach. In this study, the HVH has been tested in an alpine coniferous forest situated in the municipality of San Genesio/Jenesien (eastern Italian Alps) at 1100 m, characterized by the presence of 11 different tree species (mainly Pinus sylvestris, Larix decidua, Picea abies followed by Betula alba and Corylus avellana). The HH has been estimated through different heterogeneity measures described in the new R rasterdiv package using, besides the CHM, also other LiDAR metrics (as the percentile or the standard deviation of the height distribution) at various spatial resolutions and MWs (ALS LiDAR data with mean point cloud density of 2.9 point/m2 ). For each combination of parameters, and for all the considered plots, linear regressions between the Shannon’s H0 (used as tree species diversity index based on field data) and the HH have been derived. The results showed that the Rao’s Q index (singularly and through a multidimensional approach) performed generally better than the other heterogeneity indices in the assessment of the HH. The CHM and the LiDAR metrics related to the upper quantile point cloud distribution at fine resolution (2.5 m, 5 m) have shown the most important results for the assessment of the HH. The size of the used MW did not influence the general outcomes but instead, it increased when compared to the results found in the literature, where the HVH was tested without MW approach. The outcomes of this study underline that the HVH, calculated with certain heterogeneity indices and LiDAR data, can be considered a useful tool for assessing tree species diversity in considered forest ecosystems. The general results highlight the strength and importance of LiDAR data in assessing the height heterogeneity and the related biodiversity in forest ecosystems.
2021
Tamburlin, D., Torresani, M., Tomelleri, E., Tonon, G., Rocchini, D. (2021). Testing the Height Variation Hypothesis with the R rasterdiv Package for Tree Species Diversity Estimation. REMOTE SENSING, 13(18), 1-20 [10.3390/rs13183569].
Tamburlin, Daniel; Torresani, Michele; Tomelleri, Enrico; Tonon, Giustino; Rocchini, Duccio
File in questo prodotto:
File Dimensione Formato  
REMSENS_2021_LiDAR.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Universal – Donazione al Pubblico Dominio (CC0 1.0)
Dimensione 9.47 MB
Formato Adobe PDF
9.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/832165
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact