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Abstract: Forest biodiversity is a key element to support ecosystem functions. Measuring biodiversity
is a necessary step to identify critical issues and to choose interventions to be applied in order to
protect it. Remote sensing provides consistent quality and standardized data, which can be used
to estimate different aspects of biodiversity. The Height Variation Hypothesis (HVH) represents an
indirect method for estimating species diversity in forest ecosystems from the LiDAR data, and it
assumes that the higher the variation in tree height (height heterogeneity, HH), calculated through
the ’Canopy Height Model’ (CHM) metric, the more complex the overall structure of the forest
and the higher the tree species diversity. To date, the HVH has been tested exclusively with CHM
data, assessing the HH only with a single heterogeneity index (the Rao’s Q index) without making
use of any moving windows (MW) approach. In this study, the HVH has been tested in an alpine
coniferous forest situated in the municipality of San Genesio/Jenesien (eastern Italian Alps) at 1100 m,
characterized by the presence of 11 different tree species (mainly Pinus sylvestris, Larix decidua, Picea
abies followed by Betula alba and Corylus avellana). The HH has been estimated through different
heterogeneity measures described in the new R rasterdiv package using, besides the CHM, also other
LiDAR metrics (as the percentile or the standard deviation of the height distribution) at various
spatial resolutions and MWs (ALS LiDAR data with mean point cloud density of 2.9 point/m2).
For each combination of parameters, and for all the considered plots, linear regressions between
the Shannon’s H′ (used as tree species diversity index based on field data) and the HH have been
derived. The results showed that the Rao’s Q index (singularly and through a multidimensional
approach) performed generally better than the other heterogeneity indices in the assessment of the
HH. The CHM and the LiDAR metrics related to the upper quantile point cloud distribution at fine
resolution (2.5 m, 5 m) have shown the most important results for the assessment of the HH. The size
of the used MW did not influence the general outcomes but instead, it increased when compared to
the results found in the literature, where the HVH was tested without MW approach. The outcomes
of this study underline that the HVH, calculated with certain heterogeneity indices and LiDAR data,
can be considered a useful tool for assessing tree species diversity in considered forest ecosystems.
The general results highlight the strength and importance of LiDAR data in assessing the height
heterogeneity and the related biodiversity in forest ecosystems.

Keywords: forest ecosystems; biodiversity; Rao’s Q index; height heterogeneity; remote sensing;
LiDAR; rasterdiv

1. Introduction

Forests cover about 30% of the Earth’s surface [1] and supports about 65% of the
world’s terrestrial taxa, hosting two-thirds of all plants and animals living on land [2].
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Various studies [3–5] suggested that many of the services deriving from forests are linked
to their biodiversity. Gamfeldt et al. [3] showed that the soil carbon storage and the tree
biomass production is higher in forests with higher tree species diversity. Ball et al. [6]
proved that the loss of tree species diversity affects negatively the above ground carbon stor-
age and is responsible of the reduction of the belowground and aboveground decomposer
biota, which itself influences negatively the nutrient turnover. Tree species diversity is
reducing the frequency and severity of natural disasters (such as for example landslide and
avalanches) [7], increasing the fauna biodiversity (mammals, arthropods, birds, herps) [8]
and influencing both food and potential production [3].

The loss of biodiversity in different ecosystems is a worldwide problem that is already
happening due to a series of causes, such as: habitat degradation [9], landscape fragmenta-
tion [10], unsustainable forest management [11], climate change [12] and pollution [13]. For
these reasons, monitoring forest biodiversity has become a crucial task in order to detect
changes of habitats and to implement forest protection plans [14].

Remote sensing has proven to be a key instrument for monitoring ecosystems and
to assess different aspects of biodiversity [15–19]. The recent advances in sensor tech-
nology (high spatial resolution, broad coverage and high revisit frequency) allowed the
application of remote sensing techniques in highly heterogeneous ecosystems providing
a wide coverage and standardized data in a short period of time [20–24]. LiDAR (Light
Detection and Ranging) represents one of the remote sensing technology widely used to
monitor different variables of forest ecosystems. LiDAR can be an effective tool not only
for vegetation mapping [25] and acquisition of forest biophysical forest data [26], but also
to assess various aspects of biodiversity [27–29]. In particular the Airborne Laser Scanning
(ALS) acquires LiDAR data from aircrafts over large areas, having the strength to accurately
characterize the three-dimensional (3D) structure of the forest canopy. This technique is
useful for not only forest inventories, but also for ecological and commercial purposes,
where information of vertical and horizontal structure are needed [30]. On the other hand
the Terrestrial Laser Scanning (TLS) collects high density LiDAR point cloud data from the
ground, surveying smaller areas (few tens meters of radius), resulting in an efficient and
objective option for research purposes, acquiring very accurate information about diameter,
crown structure, stem curve and form, biomass, height and location of the trees [31]. The
availability of LiDAR data has become more accessible nowadays due to various reasons,
among which the drop of the costs, the development of the sensor technology which has
occurred in recent years, and the advantages of having clear, accurate and precise informa-
tion of the 3D structure of the forest, features which were not possible to obtain from other
remote sensing data, as for example with optical images. For all these reasons LiDAR data
can now be utilized for different applications, including forest biodiversity estimation.

A recent study carried out by Torresani et al. [28] developed the concept of the
“Height Variation Hypothesis” (HVH) that put in correlation tree species diversity and
height heterogeneity (HH) calculated from Canopy Height Model (CHM) LiDAR metric
derived from ALS data. The HVH assumes that the higher the variation in tree height,
calculated with LiDAR data, the more complex the overall structure of the forest and the
higher the tree species diversity (see Figure A1 in Appendix A for visual explanation of the
HVH). Forest structure and its vertical heterogeneity has been considered in many studies
a good proxy of tree species diversity: the higher the complexity, the higher the number of
available niches that can host more tree species [32–36]. The vertical spatial distribution
of the forest canopy indeed plays a crucial role in structuring spatial–temporal patterns
of various forest resources and it has been considered an essential driver of different
ecosystem functions such as habitat diversification and environmental heterogeneity [37].
More specifically, forests with a multi-layered structure have a higher tree species diversity
as a result of higher light availability, influencing the photosynthetic capacity, growth
and distribution of trees [38]. This relationship was confirmed by different other studies,
such as Alberti et al. [39], which stated that the ecological conditions and disturbances are
the main factors that influence the forest vertical structure and are linked to biodiversity.



Remote Sens. 2021, 13, 3569 3 of 20

Hiroaki et al. [38], highlighted the importance of including three-dimensional structural
attributes of tree canopies to preserve biodiversity in forest ecosystems. Tree Height
heterogeneity was found to be a crucial factor for the characterization of forest habitats,
integrating richness models of various species [40].

The idea behind the HVH comes from the related concept of the Spectral Variation
Hypothesis (SVH), designed by Palmer et al. [41] and successively developed by Roc-
chini et al. [17], which assumes that the higher the spectral variation of an optical image,
the higher the environmental heterogeneity and the species diversity of the considered
area. Compared to other remote sensing based methods (e.g., SVH), the HVH, based on the
use of LiDAR data, has the advantage to reach higher level of spatial resolution, allowing
us to reconstruct and acquire the information related to the whole 3D forest structure.
Furthermore, in highly heterogeneous ecosystems, as in mountain areas, the HVH is not
influenced by the shade effects captured by optical images (which might result very strong)
that might affect the relationship between optical heterogeneity and species diversity.

Torresani et al. [28] tested the HVH in various forest ecosystems, showing that the HH
(measured by Rao’s Q quadratic entropy index) was related to the tree species diversity
of the considered ecosystems. Best correlations with field data were obtained with the
LiDAR metric “Canopy Height Model” (CHM) at spatial resolution of 2.5 m (R2 = 0.63 for
a coniferous alpine forest).

To date, the HVH has been tested exclusively with CHM data, assessing the HH only
with the Rao’s Q index, without making use of any moving windows (MW) approach [28].
The aim of this work is to investigate the relationship between forest structure and tree
species diversity through a remote sensing approach based on the HVH. In particular, the
main objective is to test different LiDAR datasets, metrics and heterogeneity indices at
different spatial resolutions and MW, in order to understand which is the best combination
of data that can define the above mentioned relationships. In order to test all these
combinations, we decided to relay on the recent R rasterdiv package [42] developed by
Rocchini et al. [43]. It is a new R package that, to date, has never been tested with remote
sensing data having field data as validation. It has the characteristic to easily and directly
test different indices of diversity, MW sizes and other distances, without passing through
pre-analysis as for example PCA.

Specifically, the objectives of this study are:

• test different LiDAR metrics for the assessment of the HH;
• understand which R rasterdiv index is the most accurate in characterizing the HH;
• test the effects of different MW size for each index.

2. Materials and Methods
2.1. Study Area and Field Data

In this study, the HVH has been tested in the alpine coniferous forest located in the
Province of Bolzano/Bozen (Italy) in the municipality of San Genesio/Jenesien (N46◦55′

E11◦32′). The size of the study area is approximately of 270 ha. Twenty plots having
size of 1 ha (100 m × 100 m) were randomly chosen within a dense coniferous forest at
1100 m a.s.l (Figure 1). Following previous study designs [14,44], the center and corners of
all plots were geo-referenced with a GPS device (spatial accuracy of ±3 m; Garmin, USA).
From June to August 2017, within each plot, all the trees with a diameter at breast high
(DBH) of at least 5 cm were measured with a tree caliper and classified into species. Ninety
five percent of the measured trees were coniferous species, dominated by Pinus sylvestris,
followed by Larix decidua and Picea abies. The remaining five percent were deciduous such
as Betula alba, Corylus avellana, Salix caprea and Sorbus aucuparia.
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Figure 1. Study area of San Genesio/Jenesien (Italy). The the blue squares identifies the position of the plots (100 × 100 m
each). The red line shows the area where the plots have been randomly selected.

In each plot, the Shannon’s H index (Equation (1)) was calculated in order to assess
the tree species diversity [45].

H = −
R

∑
i=1

pi ∗ ln(pi), (1)

where:

• H = Shannon’s H index.
• R = number of species.
• pi = proportion of species i relative to the total number of species.

The Shannon’s H index has its foundations in information theory and it is widely used
in ecological [46–48] and (more recently) in remote sensing applications [14].

2.2. LiDAR Data

The LiDAR data used in this study derives from an airborne laser scanning (ALS)
campaign carried out in 2004–2006, acquired using ‘Optech ALTM 3033’ and ‘TopoSys
Falcon II’ scanner systems. Recording accuracy and specifications of the two scanner
systems used are shown in Table 1. Basic information on the ALS data acquisition was
recorded during the flight with an integrated global positioning system (GPS) and an
inertial measurement unit (IMU) [49].

Table 1. Technical characteristics of the ALS campaign.

TopoSys Falcon II Optech ALTM 3033

Range 300–1600 m 265–3000 m

Elevation accuracy 5–30 cm depending on satellite constellation
15 cm < 1200 m
25 cm < 2000 m
35 cm < 3000 m

Laser pulse rate 83 kHz 33 kHz

Scan rate 653 kHz Varies with scan angle

Laser wavelength 1560 nm 1064 nm
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The LiDAR point cloud, having a mean density of 2.9 point/m2, has been used to
derive different LiDAR metrics. Firstly the ground points were classified with a progressive
morphological filter [50]. The obtained point cloud was used to create a digital terrain
model (DTM) through a triangular irregular network (TIN) combined with a Delaunay
triangulation. The DTM was then used to normalize the point cloud. Finally, thanks to the
R package lidR, the normalized point cloud was rasterized in order to obtain the canopy
height models (CHM—as a difference between DSM and DTM) and the following LiDAR
metrics at different spatial resolutions (2.5 m, 5 m, 10 m and 20 m):

• zentropy: entropy of height distribution;
• zmax: maximum height (in meters);
• zsd: standard deviation of height distribution;
• zskew: skewness of height distribution;
• zkurt: kurtosis of height distribution;
• pzabovezmean: percentage of returns above zmean;
• pzabove2: percentage of returns above 2 m;
• zpcumx: cumulative percentage of return in the xth layer according to Woods et al. [51];
• zqx: percentile (quantile) of height distribution.

Although the field measurements were acquired in 2017, the temporal discrepancy
between the ALS and the field campaigns did not affect our results, since limited forest
management have occurred in the meantime in the forest area [14].

2.3. Height Heterogeneity Assessment and Statistical Analysis

Figure 2 summarizes the used methodology in order to test the HVH in the considered
forest site of San Genesio/Jenesien. For each plot, all the R rasterdiv heterogeneity indices
listed in Table 2 have been used to calculate the HH using all the available LiDAR metrics
at four spatial resolutions (2.5 m, 5 m, 10 m, 20 m) using 4 different MWs: 3× 3, 5× 5, 7× 7
and 9 × 9 (Figure A2). The Rao’s Q index has been also used through the multidimensional
method (see Rocchini et al. [52] for further information) testing different metrics together.
Table 3 reports the composition of the different lists used for this purpose. For each plot, a
linear regression has been set between the in situ field data tree species diversity Shannon’s
H index and the HHs calculated as the mean of each resulting matrix (derived from each
index, calculated with the different LiDAR metrics and MWs).

Table 2. List of the used R rasterdiv heterogeneity indices.

Index Symbol Index Formula Factors References

Shannon’s H
diversity index H′ −

R
∑

i=1
pi ∗ ln(pi)

p = relative abundance of a pixel value in a matrix
plot (R) [52]

Berger-Parker’s
diversity index B max(pi)

p = relative abundance of a pixel value in a matrix
plot [53]

Cumulative
Residual Entropy CRE N

∑
i=1

P(X≥xi) ∗ logP(X≥xi)dx

N = dimension of the random vector X
X = discrete random vector
dx = (xi − xi−1)
P = the probabilities that the vector of observation is
larger or equal to each value of the vector

[54]

Hill’s index of
diversity D (

R
∑

i=1
pq

i )
1/(1−q)

p = relative abundance of a pixel value in a matrix
plot (R)
q = the ‘order’ of the diversity measure, determines
its sensitivity to pixel frequencies

[55]

Pielou’s evenness
index E′ H

Hmax
H = Shannon’s H

Rao’s Q index of
quadratic entropy Q R−1

∑
i=1

R
∑

j=i+1
di,j ∗ pi ∗ pj

p = relative abundance of a pixel value in a matrix
plot (R)
dij = distance between the i-th and j-th pixel value
dij = dji and dii = 0
i = pixel i
j = pixel j

[52]
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Table 3. Composition of the lists used in the “multidimension” method of Rao’s Q function (rasterdiv).

Method ‘Multidimension’ (Rao’s Q Function)

List 1
chm,pzabove2,pzabovezmean,zentropy,zkurt,zmax,zskew,zsd,zpcum1,zpcum2,
zpcum3,zpcum4,zpcum5,zpcum6,zpcum7,zpcum8,zpcum9,zq5,zq10,zq15,zq20,
zq25,zq30,zq35,zq40,zq45,zq50,zq55,zq60,zq65,zq70,zq75,zq80,zq85,zq90,zq95

List 2
pzabove2,pzabovezmean,zentropy,zkurt,zmax,zskew,zsd,zpcum1,zpcum2
zpcum3,zpcum4,zpcum5,zpcum6,zpcum7,zpcum8,zpcum9,zq5,zq10,zq15,zq20,
zq25,zq30,zq35,zq40,zq45,zq50,zq55,zq60,zq65,zq70,zq75,zq80,zq85,zq90,zq95

List 3 chm,pzabove2,pzabovezmean,zentropy,zkurt,zmax,zskew,zsd,zpcum1,zq5

List 4 chm,pzabove2,pzabovezmean,zentropy,zkurt,zmax,zskew,zsd,zpcum5,zq50

List 5 chm,pzabove2,pzabovezmean,zmax

List 6 chm,zq95

Figure 2. Summary scheme of the used methodology. The height heterogeneity (HH), has been
calculated for each plot, testing different LiDAR metrics at different spatial resolution using various
heterogeneity indices (with different moving windows) of the R rasterdiv package. The HH has been
successively related by linear regression with the tree species diversity (Shannon’s H) of each plot.

3. Results
3.1. In-Situ Field Data Tree Species Diversity

Table 4 summarizes the Shannon’s H (used as in situ field data species diversity index)
information related to the study area, while the Shannon’s H information for each plot is
summarized in Table A1 (Appendix D).

Table 4. Species diversity information derived from field data related to the whole study area. Further
information related to the single plot can be found in Table A1.

Shannon’s H Field Data
San Genesio/Jenesien

Number of plots 20
Mean 0.67
Standard deviation 0.33
Min 0.11
Max 1.36
Median 0.68
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3.2. Relationship between Tree Species Diversity and LiDAR Height Heterogeneity

According to our results, the HVH tested on the coniferous forest of San Gene-
sio/Jenesien can be considered a useful tool for assessing tree species diversity. The
study showed that the results are influenced by both the LiDAR metrics and the hetero-
geneity indices, but not by the MW size. In particular, Figure 3 shows the histograms
representing the R2 values derived from the relationship between the Shannon’s field index
and the HH, calculated for the Rao’s Q index using all the LiDAR metrics and MWs at
different spatial resolutions (2.5 m, 5 m, 10 m and 20 m). In the Appendix C, we reported
the histograms related to the other indices since they showed lower level of correlation.
Best results have been obtained using Rao’s Q index at spatial resolution of 2.5 m (R2

ranging from 0.734 to 0.75—see Figure 3). Within this result, the LiDAR metrics that best
related with the field’s tree species diversity (Shannon’s H) at spatial resolution of 2.5 m
are the CHM and those related to the upper quantile point cloud distribution distribution
(CHM, zq95, zq90, zq85, zq80). Similar results, with lower level of correlation are showed
for the spatial resolution of 5 m. For a spatial resolution of 10 m, the correlations between
HH and field data are lower, in this case the metrics that better correlate with the in situ
field data diversity are the ones referred to the middle quantile distribution (zq50, zq45,
zq30, zq55). Even lower are the levels of correlation for the spatial resolution of 20 m.

Particularly interesting are the Rao’s Q “multidimension” outcomes (Table 5). The
lists 6 composed of “chm and zq95” at a spatial resolution of 2.5 m showed the highest
correlation reaching R2 values around 0.7 (the highest R2 = 0.712 for a MW of 3 × 3).

Table 5. R2 referred to linear models between the means of the matrices of the “multidimension”
method of Rao’s Q index (at different spatial resolutions and MWs) and the Shannon’s H.

Spatial Resolution: 2.5 m
MW 3 MW 5 MW 7 MW 9

List 1 0.191 0.242 0.258 0.252
List 2 0.189 0.239 0.254 0.248
List 3 0.214 0.248 0.248 0.232
List 4 0.133 0.185 0.204 0.199
List 5 0.0762 0.0863 0.0768 0.0623
List 6 0.712 0.718 0.707 0.69

Spatial Resolution: 5 m
MW 3 MW 5 MW 7 MW 9

List 1 0.279 0.22 0.166 0.141
List 2 0.276 0.216 0.163 0.138
List 3 0.145 0.0998 0.0683 0.0535
List 4 0.0951 0.0543 0.0273 0.0166
List 5 0.0623 0.027 0.0113 0.00592
List 6 0.577 0.494 0.433 0.386

Spatial Resolution: 10 m
MW 3 MW 5 MW 7 MW 9

List 1 0.0002 0.01 0.01 0.01
List 2 0.0004 0.01 0.01 0.01
List 3 8.19*10−5 0.005 0.008 0.007
List 4 0.04 0.07 0.08 0.08
List 5 0.01 0.03 0.03 0.03
List 6 0.2 0.15 0.13 0.12

Spatial Resolution: 20 m
MW 3 MW 5 MW 7 MW 9

List 1 0.164 0.218 0.164 0.0983
List 2 0.168 0.222 0.168 0.101
List 3 0.0557 0.0906 0.121 0.109
List 4 0.284 0.333 0.305 0.212
List 5 0.0784 0.125 0.155 0.132
List 6 0.168 0.117 0.0792 0.0471
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Figure 3. Performance of each LiDAR-based metric to describe tree species diversity. In particular, the histograms show
the R2 values relative to the linear regression between Shannon’s H (derived from field data) and the mean of the Rao’s Q
matrices of each LiDAR-based metric and for each MW.
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4. Discussion

Different methods and approaches have been developed in recent years to assess vari-
ous aspects of biodiversity through remote sensing data. The Height Variation Hypothesis
(HVH) has proved to be one of them [28], stating that the higher the variation in tree height
calculated from LiDAR data, the more complex the overall structure of the forest, and the
higher the tree species diversity. Various studies showed that structurally complex forests
increase biodiversity by enhancing environmental heterogeneity such as the variability of
micro-habitats and the range of micro-climates [38,56], influencing not only the diversity
of trees, but also of different other organisms including birds, small mammals and under-
story plants [38]. Height tree complexity is furthermore related to ecosystem productivity,
by supporting complementary resource utilization among plant species [38]. The HVH
takes advantages of the benefits of the LiDAR technology, which, with its high resolution,
precision and increasing data availability, represents the perfect tool in forest applications
for the 3D forest representation and its related vertical structure. In this study, the HVH
has been tested using different LiDAR metrics, various heterogeneity indices and the MW
approach in order to assess the relationship between the tree species diversity and the
HH in an alpine coniferous forest located in the eastern Italian Alps. For the first time,
all the R rasterdiv heterogeneity indices have been tested and compared in order to assess
the environmental heterogeneity of various forest areas through the use of LiDAR data.
The general outcomes showed that the HVH can be considered an effective tool for the
assessment of tree species diversity in forest ecosystems, where the selection of specific
LiDAR metrics and heterogeneity indices play a crucial role in the final results.

The results of this study showed that, within all the used combinations of LiDAR metrics
and MWs, the Rao’s Q heterogeneity index, used to assess the HH, performed better than
the other indices. Once the index is used on one single layer, as carried out in the “single
dimension” analysis of this paper, half of the squared Euclidean distance (1/2 d2

ij where dij
is the Euclidean distance) is used and the Rao’s Q reduces to variance, which is basically a
good approximation of heterogeneity when making use of continuous variables [57]. In the
“multidimensional mode”, each distance is multiplied by the inverse of the squared number of
pixels in the considered MW, and the Rao’s Q is finally derived by applying their summation.
Furthermore the Rao’s Q, compared to the other considered indices, has the characteristic
of considering both the distance (using their values) and abundance of the pixels within
a considered dataset [58]. This result is in line with several other studies where the Rao’s
Q index has been used to assess biodiversity in different ecosystems [14,59,60]. We refer
to [61–63] for additional information on the mathematical properties of Rao’s Q.

The outcomes showed that certain LiDAR metrics, within the concept of the HVH, are
more suitable for assessing HH. Generally, using the Rao’s Q index as heterogeneity index,
the LiDAR metrics related to the upper quantile point cloud distribution (CHM, zp95, zp90,
zp85) with at a fine spatial resolutions (2.5 m and 5 m) showed the most accurate results.
The outcomes related to the multidimensional Rao’s Q index are in line with the general
results referred to the single metrics. The highest levels of correlation are found using the
“list 6” that includes both the CHM and the zq95. These results highlight that the HVH is
mainly influenced by those metrics (CHM and upper quantile point cloud distribution)
that characterize the forest canopy and the related forest structure. These outcomes are in
line with the previous study of Torresani et al. [28], where the HVH was tested also in the
study area of San Genesio/Jenesien, using only the CHM LiDAR metric.

As previously stressed, in the study of Torresani et al. [28], the HVH has been tested
in the area of San Genesio/Jenesien correlating the HH with the Rao’s Q index only using
the CHM (without MW) reaching a R2 value of 0.63 (using a CHM with a resolution of
2.5 m). In this study, in the same study area, using a CHM of the same spatial resolution,
applying the MW approach, the R2 ranged from 0.734 to 0.75, showing that this technique
could add more precision to the estimation of the HH.

The spatial resolution of the LiDAR data played a crucial role in this study. As shown
in the results related to the Rao’s Q index, the different LiDAR metrics have been tested
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at different resolutions, in order to understand how the HH changes using datasets with
different pixel sizes. In our study, the coarser area resolutions generated the weakest results.
These results are again in line with the previous study of Torresani et al. [28], where the
relationship between HH and species diversity was stronger for finer resolutions (2.5 m).
The authors stated that in dense forest areas such as the one of San Genesio/Jenesien, this
resolution could be considered the most appropriate for the detection of single trees. The
essential concept behind the HVH is that the HH should reflect the trees’ heterogeneity;
therefore, a too high or too coarse LiDAR metric resolution risks being inappropriate
for our purpose. As stated in various other studies [28,64], the relation of higher spatial
resolution—higher accuracy is not always so clear and linear. Sometimes, within an image,
too high resolutions bring too much noise and variability when compared to the size of the
target objects of the study, thus reducing accuracy. One of the challenges, therefore, is to
ensure that the scales of the images match those of the species richness data, and that both
are properly scaled [65].

This study was possible thanks to the new R rasterdiv package that allows us to
conduct multi-scale studies, giving the possibility to choose different indices and MW sizes,
combining them at different spatial resolutions. These features allow the researchers to
make the scale factor explicit when performing spatial analysis and to avoid scale-related
confusion effects in the calculation of diversity measures. The different features of the
package allow to reduce the problems of hidden patterns within the relation between field
and landscape based diversity caused by scale mismatch [42,66]. In this study, for the
first time, the R rasterdiv package was tested with remote sensing information having field
validation data, showing its skills as a possible benchmark R package for the assessment of
remote sensing biodiversity.

An additional concern that may arise could be related to the small extent of the study
area, an alpine coniferous forest dominated mainly by pines, larches and spruces. Other
related studies tested similar concepts (like the Spectral Variation Hypothesis—SVH) in
relatively small areas, considering a limited number of plots. Gould et al. [67] tested the
SVH in the Hood river region of the central Canadian arctic using 17 plots of 0.5 km2

size. Rocchini et al. [68] used 22 plots to test the spectral variation of multispectral images
for the estimation of the species diversity in a wetland area in Central Italy. This study
represents one of the first steps in order to explain the relation between the tree species
diversity and HH since, to date, only one other study [28] has focused on investigating the
HVH. This point represents a typical bias of any empirical study, and due to the strength
of the general relation between HH and species diversity, the results of this research can
probably be applicable to wider areas. Concluding, it is worth underlining that, as stated by
Torresani et al. [28], the concept of HVH might not always hold truth in all the considered
ecosystems. Some forests might have a high structural diversity that does not correspond
to a high tree species diversity. Typical examples of these environments are some natural
forests in ‘climax’ stage, like the alpine larch forests found at the limit of vegetation. These
forests are indeed characterized by a high structural diversity and low tree species diversity,
due to the low competition given by the particular climatic conditions.

5. Conclusions

In this paper, the concept of HVH proposed by Torresani et al. [28] was covered in
depth, testing the above mention hypothesis in an alpine coniferous forest in the eastern
Italian Alps, using different LiDAR metrics, heterogeneity indices (thanks to the R rasterdiv
package) and MWs approaches. The results showed that in general, the concept of HVH
holds truth with the Rao’s Q heterogeneity index using LiDAR metrics related to the canopy
of the forest (CHM and the ones associated to upper quantile point cloud distribution
distribution) applied to fine spatial resolutions (of 2.5 m and 5 m). However, we are aware
that the suggested hypothesis should be tested in other forest ecosystems, using different
indices and data-sets, before considering the approach a generalizable method. Further
analysis could be conducted by developing a methodology that combines information
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from optical sensors, with the aim of obtaining multiple types of information. Additional
analysis could consider the species diversity of forest shrubs, grasses or animals in order
to have a more complete biodiversity picture of the forest. We suggest the HVH could
be used as a ‘first filter’ in the identification of tree species diversity hot-spots by forest
manager or ecologists, or eventually to guide field sampling.
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Appendix A. Visual Representation Height Variation Hypothesis

(a) (b)

Figure A1. Visual representation of the “Height Variation Hypothesis”: the subfigure (a) shows the
LiDAR point cloud over a forest plot (1 ha) having a low height heterogeneity and a low species diversity.
On the other side, plot (b) shows a higher height heterogeneity and a related higher species diversity.

Appendix B. Moving Windows and Spatial Resolution

Figure A2. Representation of moving windows (3 × 3, 5 × 5, 7 × 7, 9 × 9) applied to 10 m of
spatial resolution.
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Appendix C. San Genesio/Jenesien Histograms

Appendix C.1. Berger-Parker

Figure A3. Histograms concerning the R2 values relative to the linear regression between Shannon’s H field index and the
mean of the Berger–Parker’s matrices of each LiDAR metric and for each MW (San Genesio/Jenesien study area).
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Appendix C.2. CRE

Figure A4. Histograms concerning the R2 values relative to the linear regression between Shannon’s H field index and the
mean of the CRE matrices of each LiDAR metric and for each MW (San Genesio/Jenesien study area).
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Appendix C.3. Hill

Figure A5. Histograms concerning the R2 values relative to the linear regression between Shannon’s H field index and the
mean of the Hill’s matrices of each LiDAR metric and for each MW (San Genesio/Jenesien study area).
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Appendix C.4. Pielou

Figure A6. Histograms concerning the R2 values relative to the linear regression between Shannon’s H field index and the
mean of the Pielou’s matrices of each LiDAR metric and for each MW (San Genesio/Jenesien study area).
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Appendix C.5. Shannon’s H

Figure A7. Histograms concerning the R2 values relative to the linear regression between Shannon’s H field index and the
mean of the Shannon’s H matrices of each LiDAR metric and for each MW (San Genesio/Jenesien study area).
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Appendix D. Field Data Shannon’s H

Table A1. Shannon’s H and species richness for each of the 20 plots.

Plot Number Shannon’s H Species Richness

1 0.11 5
2 0.98 7
3 1.36 11
4 0.94 9
5 1.05 4
6 0.8 4
7 0.55 4
8 0.96 6
9 0.88 6
10 0.44 7
11 0.65 9
12 0.82 8
13 0.67 7
14 0.32 6
15 0.12 7
16 0.42 4
17 0.44 5
18 0.27 7
19 0.94 6
20 0.7 4
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