Diacylglycerol kinase (DGK) constitutes a family of enzymes that phosphorylate diacylglycerol to phosphatidic acid (PA). These lipids serve as second messengers, thereby activating distinct downstream cascades and different cellular responses. Therefore, DG-to-PA conversion activity induces a phase transition of signaling pathways. One member of the family, DGKζ, is involved closely with stress responses. Morphological data showing that DGKζ localizes predominantly to the nucleus and that it shuttles between the nucleus and the cytoplasm implicate DGKζ in the regulation of transcription factors during stress responses. Tumor suppressor p53 and NF-κB are major stress-responsive transcription factors. They exert opposing effects on cellular pathophysiology. Herein, we summarize DGKζ catalytic activity-dependent and -independent regulatory mechanisms of p53 and NF-κB transactivation activities, including p53 degradation and NF-κB nuclear translocation. We also discuss how each component of DGKζ-interacting protein complex modulates the specificity and selectivity of target gene expression.

T. Tanaka, T.N. (2021). Regulation of p53 and NF-κB transactivation activities by DGKζ in catalytic activity-dependent and -independent manners. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 1868(4), 1-9 [10.1016/j.bbamcr.2021.118953].

Regulation of p53 and NF-κB transactivation activities by DGKζ in catalytic activity-dependent and -independent manners.

A. M. Martelli
Membro del Collaboration Group
;
2021

Abstract

Diacylglycerol kinase (DGK) constitutes a family of enzymes that phosphorylate diacylglycerol to phosphatidic acid (PA). These lipids serve as second messengers, thereby activating distinct downstream cascades and different cellular responses. Therefore, DG-to-PA conversion activity induces a phase transition of signaling pathways. One member of the family, DGKζ, is involved closely with stress responses. Morphological data showing that DGKζ localizes predominantly to the nucleus and that it shuttles between the nucleus and the cytoplasm implicate DGKζ in the regulation of transcription factors during stress responses. Tumor suppressor p53 and NF-κB are major stress-responsive transcription factors. They exert opposing effects on cellular pathophysiology. Herein, we summarize DGKζ catalytic activity-dependent and -independent regulatory mechanisms of p53 and NF-κB transactivation activities, including p53 degradation and NF-κB nuclear translocation. We also discuss how each component of DGKζ-interacting protein complex modulates the specificity and selectivity of target gene expression.
2021
T. Tanaka, T.N. (2021). Regulation of p53 and NF-κB transactivation activities by DGKζ in catalytic activity-dependent and -independent manners. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 1868(4), 1-9 [10.1016/j.bbamcr.2021.118953].
T. Tanaka, T. Nakano, Y. Hozumi, A.M. Martelli, K. Goto.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/827596
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact