In this paper, we consider a multi-objective optimization problem over networks in which agents aim to maximize their own objective function, while satisfying both local and coupling constraints. This set up includes, e.g., the computation of optimal steady states in multi-agent control systems. Since fairness is a key feature required for the solution, we resort to Cooperative Game Theory and search for the Nash bargaining solution among all the efficient (or Pareto optimal) points of a bargaining game. We propose a negotiation mechanism among the agents to compute such a solution in a distributed way. The problem is reformulated as the maximization of a properly weighted sum of the objective functions. The proposed algorithm is then a two step procedure in which local estimates of the Nash bargaining weights are updated online and existing distributed optimization algorithms are applied. The proposed method is formally analyzed for a particular case, while numerical simulations are provided to corroborate the theoretical findings and to demonstrate its efficacy.
Camisa A., Köhler P.N., Müller M.A., Notarstefano G., Allgöwer F. (2020). A distributed optimization algorithm for Nash bargaining in multi-agent systems. Elsevier [10.1016/j.ifacol.2020.12.402].
A distributed optimization algorithm for Nash bargaining in multi-agent systems
Camisa A.
;Notarstefano G.;
2020
Abstract
In this paper, we consider a multi-objective optimization problem over networks in which agents aim to maximize their own objective function, while satisfying both local and coupling constraints. This set up includes, e.g., the computation of optimal steady states in multi-agent control systems. Since fairness is a key feature required for the solution, we resort to Cooperative Game Theory and search for the Nash bargaining solution among all the efficient (or Pareto optimal) points of a bargaining game. We propose a negotiation mechanism among the agents to compute such a solution in a distributed way. The problem is reformulated as the maximization of a properly weighted sum of the objective functions. The proposed algorithm is then a two step procedure in which local estimates of the Nash bargaining weights are updated online and existing distributed optimization algorithms are applied. The proposed method is formally analyzed for a particular case, while numerical simulations are provided to corroborate the theoretical findings and to demonstrate its efficacy.File | Dimensione | Formato | |
---|---|---|---|
nash_bargaining-ifac.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
481.17 kB
Formato
Adobe PDF
|
481.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.