The investigation of new green biogenic pyrrolidinones as alternative solvents to N,N-dimethylformamide (DMF) for solid phase peptide synthesis (SPPS) led to the identification of N-octyl pyrrolidone (NOP) as the best candidate. NOP showed good performances in terms of swelling, coupling efficiency and low isomerization generating peptides with very high purity. A mixture of NOP with 20% dimethyl carbonate (DMC) allowed a decrease in solvent viscosity, making the mixture suitable for the automated solid-phase protocol. Aib-enkephalin and linear octreotide were successfully used to test the methodologies. It is worth noting that NOP, DMC and the piperidine used in the deprotection step could be easily recovered by direct distillation from the process waste mixture. The process mass intensity (PMI), being reduced by 63–66%, achieved an outstanding value representing a clear step forward in achieving green SPPS.

Steps towards sustainable solid phase peptide synthesis: use and recovery of N-octyl pyrrolidone

Giulia Martelli;Alessandra Tolomelli
;
Dario Corbisiero;Alexia Mattellone;Tommaso Fantoni;Walter Cabri
;
Lucia Ferrazzano
2021

Abstract

The investigation of new green biogenic pyrrolidinones as alternative solvents to N,N-dimethylformamide (DMF) for solid phase peptide synthesis (SPPS) led to the identification of N-octyl pyrrolidone (NOP) as the best candidate. NOP showed good performances in terms of swelling, coupling efficiency and low isomerization generating peptides with very high purity. A mixture of NOP with 20% dimethyl carbonate (DMC) allowed a decrease in solvent viscosity, making the mixture suitable for the automated solid-phase protocol. Aib-enkephalin and linear octreotide were successfully used to test the methodologies. It is worth noting that NOP, DMC and the piperidine used in the deprotection step could be easily recovered by direct distillation from the process waste mixture. The process mass intensity (PMI), being reduced by 63–66%, achieved an outstanding value representing a clear step forward in achieving green SPPS.
2021
Giulia Martelli; Paolo Cantelmi; Alessandra Tolomelli; Dario Corbisiero; Alexia Mattellone; Antonio Ricci; Tommaso Fantoni; Walter Cabri; Federica Vacondio; Francesca Ferlenghi; Marco Mor; Lucia Ferrazzano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/822026
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact