The ability to augment a video stream with consistent virtual contents is an attractive Computer Vision application. The first Augmented Reality (AR) proposals required the scene to be endowed with special markers. Recently, thanks to the developments in the field of natural invariant local features, similar results have been achieved in a markerless scenario. The computer vision community is now equipped with a set of relatively standard techniques to solve the underlying markerless camera pose estimation problem, at least for planar textured reference objects. The majority of proposals, however, does not exploit temporal consistency across frames in order to reduce some disturbing effects of per-frame estimation, namely visualization of short spurious estimations and jitter. We proposes a new method based on Support Vector Regression to mitigate these undesired effects while preserving the ability to work in real-time. Our proposal can be used as a post processing step independent of the chosen pose estimation method, thus providing an effective and easily integrable building block for AR applications.
S. Salti, L. Di Stefano (2009). SVR-Based Jitter Reduction for Markerless Augmented Reality. BERLIN : Springer-Verlag.
SVR-Based Jitter Reduction for Markerless Augmented Reality
SALTI, SAMUELE;DI STEFANO, LUIGI
2009
Abstract
The ability to augment a video stream with consistent virtual contents is an attractive Computer Vision application. The first Augmented Reality (AR) proposals required the scene to be endowed with special markers. Recently, thanks to the developments in the field of natural invariant local features, similar results have been achieved in a markerless scenario. The computer vision community is now equipped with a set of relatively standard techniques to solve the underlying markerless camera pose estimation problem, at least for planar textured reference objects. The majority of proposals, however, does not exploit temporal consistency across frames in order to reduce some disturbing effects of per-frame estimation, namely visualization of short spurious estimations and jitter. We proposes a new method based on Support Vector Regression to mitigate these undesired effects while preserving the ability to work in real-time. Our proposal can be used as a post processing step independent of the chosen pose estimation method, thus providing an effective and easily integrable building block for AR applications.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.