In ℝ3 we consider the vector fields X_1 and X_2 in R^3. We prove a trace theorem for Sobolev functions on a half space. The trace is estimated by means of a suitable Besov space that is defined using the Carnot–Carathéodory metric associated with the vector fields and the related perimeter measure.
Gerosa D., Monti R., Morbidelli D. (2021). A trace theorem for Martinet-type vector fields. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 23(2), 1-28 [10.1142/S0219199719500664].
A trace theorem for Martinet-type vector fields
Morbidelli D.
2021
Abstract
In ℝ3 we consider the vector fields X_1 and X_2 in R^3. We prove a trace theorem for Sobolev functions on a half space. The trace is estimated by means of a suitable Besov space that is defined using the Carnot–Carathéodory metric associated with the vector fields and the related perimeter measure.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
contemporary_postprint.pdf
Open Access dal 15/08/2020
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.