In ℝ3 we consider the vector fields X_1 and X_2 in R^3. We prove a trace theorem for Sobolev functions on a half space. The trace is estimated by means of a suitable Besov space that is defined using the Carnot–Carathéodory metric associated with the vector fields and the related perimeter measure.

Gerosa D., Monti R., Morbidelli D. (2021). A trace theorem for Martinet-type vector fields. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 23(2), 1-28 [10.1142/S0219199719500664].

A trace theorem for Martinet-type vector fields

Morbidelli D.
2021

Abstract

In ℝ3 we consider the vector fields X_1 and X_2 in R^3. We prove a trace theorem for Sobolev functions on a half space. The trace is estimated by means of a suitable Besov space that is defined using the Carnot–Carathéodory metric associated with the vector fields and the related perimeter measure.
2021
Gerosa D., Monti R., Morbidelli D. (2021). A trace theorem for Martinet-type vector fields. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 23(2), 1-28 [10.1142/S0219199719500664].
Gerosa D.; Monti R.; Morbidelli D.
File in questo prodotto:
File Dimensione Formato  
contemporary_postprint.pdf

Open Access dal 15/08/2020

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/813916
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact