In many Systems on Chips (SoCs), the cores are clustered in to voltage islands. When cores in an island are unused, the entire island can be shutdown to reduce the leakage power consumption. However, today, the interconnect architecture is a bottleneck in allowing the shutdown of the islands. In this paper, we present a synthesis approach to obtain customized application-specific Networks on Chips (NoCs) that can support the shutdown of voltage islands. Our results on realistic SoC benchmarks show that the resulting NoC designs only have a negligible overhead in SoC active power consumption (average of 3%) and area (average of 0.5%) to support the shutdown of islands. The shutdown support provided can lead to a significant leakage and hence total power savings.

Seiculescu C., Murali S., Benini L., De Micheli G. (2009). NoC topology synthesis for supporting shutdown of voltage islands in SoCs. NEW YORK : ACM.

NoC topology synthesis for supporting shutdown of voltage islands in SoCs

BENINI, LUCA;
2009

Abstract

In many Systems on Chips (SoCs), the cores are clustered in to voltage islands. When cores in an island are unused, the entire island can be shutdown to reduce the leakage power consumption. However, today, the interconnect architecture is a bottleneck in allowing the shutdown of the islands. In this paper, we present a synthesis approach to obtain customized application-specific Networks on Chips (NoCs) that can support the shutdown of voltage islands. Our results on realistic SoC benchmarks show that the resulting NoC designs only have a negligible overhead in SoC active power consumption (average of 3%) and area (average of 0.5%) to support the shutdown of islands. The shutdown support provided can lead to a significant leakage and hence total power savings.
2009
Annual ACM IEEE Design Automation Conference Proceedings of the 46th Annual Design Automation Conference
822
825
Seiculescu C., Murali S., Benini L., De Micheli G. (2009). NoC topology synthesis for supporting shutdown of voltage islands in SoCs. NEW YORK : ACM.
Seiculescu C.; Murali S.; Benini L.; De Micheli G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/81262
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 15
social impact