Analysis of in-vehicle networks is an open research area that gained relevance after recent reports of cyber attacks against connected vehicles. After those attacks gained international media attention, many security researchers started to propose different algorithms that are capable to model the normal behaviour of the CAN bus to detect the injection of malicious messages. However, despite the automotive area has different constraint than classical IT security, many security research have been conducted by applying sophisticated algorithm used in IT anomaly detection, thus proposing solutions that are not applicable on current Electronic Control Units (ECUs). This paper proposes a novel intrusion detection algorithm that aims to identify malicious CAN messages injected by attackers in the CAN bus of modern vehicles. Moreover, the proposed algorithm has been designed and implemented with the very strict constraint of low-end ECUs, having low computational complexity and small memory footprints. The proposed algorithm identifies anomalies in the sequence of the payloads of different classes of IDs by computing the Hamming distance between consecutive payloads. Its detection performance are evaluated through experiments carried out using real CAN traffic gathered from an unmodified licensed vehicle.

Dario stabili, Mirco Marchetti, Michele Colajanni (2017). Detecting attacks to internal vehicle networks through Hamming distance.

Detecting attacks to internal vehicle networks through Hamming distance

Mirco Marchetti;Michele Colajanni
2017

Abstract

Analysis of in-vehicle networks is an open research area that gained relevance after recent reports of cyber attacks against connected vehicles. After those attacks gained international media attention, many security researchers started to propose different algorithms that are capable to model the normal behaviour of the CAN bus to detect the injection of malicious messages. However, despite the automotive area has different constraint than classical IT security, many security research have been conducted by applying sophisticated algorithm used in IT anomaly detection, thus proposing solutions that are not applicable on current Electronic Control Units (ECUs). This paper proposes a novel intrusion detection algorithm that aims to identify malicious CAN messages injected by attackers in the CAN bus of modern vehicles. Moreover, the proposed algorithm has been designed and implemented with the very strict constraint of low-end ECUs, having low computational complexity and small memory footprints. The proposed algorithm identifies anomalies in the sequence of the payloads of different classes of IDs by computing the Hamming distance between consecutive payloads. Its detection performance are evaluated through experiments carried out using real CAN traffic gathered from an unmodified licensed vehicle.
2017
Proceedings of the IEEE 2017 AEIT International Annual Conference - Infrastructures for Energy and ICT (AEIT 2017)
1
6
Dario stabili, Mirco Marchetti, Michele Colajanni (2017). Detecting attacks to internal vehicle networks through Hamming distance.
Dario stabili; Mirco Marchetti; Michele Colajanni
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/812044
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 63
social impact