As more and more artificial intelligence capabilities are deployed onto resource-constrained devices, designers explore several techniques in an effort to boost energy efficiency. Two techniques are quantization and voltage scaling. Quantization aims to reduce the memory footprint, as well as the memory accesses. Therefore, this article explores the resilience of convolutional neural networks to SRAM-based errors and analyzes the relative energy impact of quantization and voltage scaling, when used separately and jointly. - Theocharis Theocharides, University of Cyprus - Muhammad Shafique, Technische Universität Wien.

Denkinger B.W., Ponzina F., Basu S.S., Bonetti A., Balasi S., Ruggiero M., et al. (2020). Impact of memory voltage scaling on accuracy and resilience of deep learning based edge devices. IEEE DESIGN & TEST, 37(2), 84-92 [10.1109/MDAT.2019.2947282].

Impact of memory voltage scaling on accuracy and resilience of deep learning based edge devices

Rossi D.;
2020

Abstract

As more and more artificial intelligence capabilities are deployed onto resource-constrained devices, designers explore several techniques in an effort to boost energy efficiency. Two techniques are quantization and voltage scaling. Quantization aims to reduce the memory footprint, as well as the memory accesses. Therefore, this article explores the resilience of convolutional neural networks to SRAM-based errors and analyzes the relative energy impact of quantization and voltage scaling, when used separately and jointly. - Theocharis Theocharides, University of Cyprus - Muhammad Shafique, Technische Universität Wien.
2020
Denkinger B.W., Ponzina F., Basu S.S., Bonetti A., Balasi S., Ruggiero M., et al. (2020). Impact of memory voltage scaling on accuracy and resilience of deep learning based edge devices. IEEE DESIGN & TEST, 37(2), 84-92 [10.1109/MDAT.2019.2947282].
Denkinger B.W.; Ponzina F.; Basu S.S.; Bonetti A.; Balasi S.; Ruggiero M.; Peon-Quiros M.; Rossi D.; Burg A.; Atienza D.
File in questo prodotto:
File Dimensione Formato  
DT_DTSI-2019-04-0048.R1_Denkinger.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 3.12 MB
Formato Adobe PDF
3.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/811532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact