T-cell acute lymphoblastic leukemia (T-ALL) is a highly malignant pediatric leukemia, where few therapeutic options are available for patients which relapse. We find that therapeutic targeting of GLI transcription factors by GANT-61 is particularly effective against NOTCH1 unmutated T-ALL cells. Investigation of the functional role of GLI1 disclosed that it contributes to T-ALL cell proliferation, survival, and dissemination through the modulation of AKT and CXCR4 signaling pathways. Decreased CXCR4 signaling following GLI1 inactivation was found to be prevalently due to post-transcriptional mechanisms including altered serine 339 CXCR4 phosphorylation and cortactin levels. We also identify a novel cross-talk between GLI transcription factors and FOXC1. Indeed, GLI factors can activate the expression of FOXC1 which is able to stabilize GLI1/2 protein levels through attenuation of their ubiquitination. Further, we find that prolonged GLI1 deficiency has a double-edged role in T-ALL progression favoring disease dissemination through the activation of a putative AKT/FOXC1/GLI2 axis. These findings have clinical significance as T-ALL patients with extensive central nervous system dissemination show low GLI1 transcript levels. Further, T-ALL patients having a GLI2-based Hedgehog activation signature are associated with poor survival. Together, these findings support a rationale for targeting the FOXC1/AKT axis to prevent GLI-dependent oncogenic Hedgehog signaling.

Tosello V., Bongiovanni D., Liu J., Pan Q., Yan K.-K., Saccomani V., et al. (2021). Cross-talk between GLI transcription factors and FOXC1 promotes T-cell acute lymphoblastic leukemia dissemination. LEUKEMIA, 35(4), 984-1000 [10.1038/s41375-020-0999-2].

Cross-talk between GLI transcription factors and FOXC1 promotes T-cell acute lymphoblastic leukemia dissemination

Bongiovanni D.;
2021

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is a highly malignant pediatric leukemia, where few therapeutic options are available for patients which relapse. We find that therapeutic targeting of GLI transcription factors by GANT-61 is particularly effective against NOTCH1 unmutated T-ALL cells. Investigation of the functional role of GLI1 disclosed that it contributes to T-ALL cell proliferation, survival, and dissemination through the modulation of AKT and CXCR4 signaling pathways. Decreased CXCR4 signaling following GLI1 inactivation was found to be prevalently due to post-transcriptional mechanisms including altered serine 339 CXCR4 phosphorylation and cortactin levels. We also identify a novel cross-talk between GLI transcription factors and FOXC1. Indeed, GLI factors can activate the expression of FOXC1 which is able to stabilize GLI1/2 protein levels through attenuation of their ubiquitination. Further, we find that prolonged GLI1 deficiency has a double-edged role in T-ALL progression favoring disease dissemination through the activation of a putative AKT/FOXC1/GLI2 axis. These findings have clinical significance as T-ALL patients with extensive central nervous system dissemination show low GLI1 transcript levels. Further, T-ALL patients having a GLI2-based Hedgehog activation signature are associated with poor survival. Together, these findings support a rationale for targeting the FOXC1/AKT axis to prevent GLI-dependent oncogenic Hedgehog signaling.
2021
Tosello V., Bongiovanni D., Liu J., Pan Q., Yan K.-K., Saccomani V., et al. (2021). Cross-talk between GLI transcription factors and FOXC1 promotes T-cell acute lymphoblastic leukemia dissemination. LEUKEMIA, 35(4), 984-1000 [10.1038/s41375-020-0999-2].
Tosello V.; Bongiovanni D.; Liu J.; Pan Q.; Yan K.-K.; Saccomani V.; Van Trimpont M.; Pizzi M.; Mazzoni M.; Dei Tos A.P.; Amadori A.; Zanovello P.; Va...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/810632
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact