Abstract—Die-temperature control to avoid hotspots is increasingly critical in multiprocessor systems-on-chip (MPSoCs) for stream computing. In this context, thermal balancing policies based on task migration are a promising approach to redistribute power dissipation and even out temperature gradients. Since stream computing applications require strict quality of service and timing constraints, the real-time performance impact of thermal balancing policies must be carefully evaluated. In this paper, we present the design of a lightweight thermal balancing policy MiGra, which bounds on-chip temperature gradients via task migration. The proposed policy exploits run-time temperature as well as workload information of streaming applications to define suitable run-time thermal migration patterns, which minimize the number of deadline misses. Furthermore, we have experimentally assessed the effectiveness of our thermal balancing policy using a complete field-programmable-gate-array-based emulation of an actual three-core MPSoC streaming platform coupled with a thermal simulator. Our results indicate that MiGra achieves significantly better thermal balancing than state-of-the-art thermal management solutions while keeping the number of migrations bounded.

Thermal Balancing Policy for Multiprocessor Stream Computing Platforms

ACQUAVIVA, ANDREA;BENINI, LUCA;
2009

Abstract

Abstract—Die-temperature control to avoid hotspots is increasingly critical in multiprocessor systems-on-chip (MPSoCs) for stream computing. In this context, thermal balancing policies based on task migration are a promising approach to redistribute power dissipation and even out temperature gradients. Since stream computing applications require strict quality of service and timing constraints, the real-time performance impact of thermal balancing policies must be carefully evaluated. In this paper, we present the design of a lightweight thermal balancing policy MiGra, which bounds on-chip temperature gradients via task migration. The proposed policy exploits run-time temperature as well as workload information of streaming applications to define suitable run-time thermal migration patterns, which minimize the number of deadline misses. Furthermore, we have experimentally assessed the effectiveness of our thermal balancing policy using a complete field-programmable-gate-array-based emulation of an actual three-core MPSoC streaming platform coupled with a thermal simulator. Our results indicate that MiGra achieves significantly better thermal balancing than state-of-the-art thermal management solutions while keeping the number of migrations bounded.
2009
F. Mulas; D. Atienza; A. Acquaviva; S. Carta; L. Benini; G. De Micheli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/81009
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 38
social impact