We develop a likelihood-ratio test for discriminating between the g-and-h and the g distribution, which is a special case of the former obtained when the parameter h is equal to zero. The g distribution is a shifted lognormal, and is therefore suitable for modeling economic and financial quantities. The g-and-h is a more flexible distribution, capable of fitting highly skewed and/or leptokurtic data, but is computationally much more demanding. Accordingly, in practical applications the test is a valuable tool for resolving the tractability-flexibility trade-off between the two distributions. Since the classical result for the asymptotic distribution of the test is not valid in this setup, we derive the null distribution via simulation. Further Monte Carlo experiments allow us to estimate the power function and to perform a comparison with a similar test proposed by Xu and Genton (Comput Stat Data Anal 91:78–91, 2015). Finally, the practical relevance of the test is illustrated by two risk management applications dealing with operational and actuarial losses.

Bee, M., Hambuckers, J., Santi, F., Trapin, L. (2021). Testing a parameter restriction on the boundary for the g-and-h distribution: a simulated approach. COMPUTATIONAL STATISTICS, 36(3 (September)), 2177-2200 [10.1007/s00180-021-01078-3].

Testing a parameter restriction on the boundary for the g-and-h distribution: a simulated approach

Trapin L.
2021

Abstract

We develop a likelihood-ratio test for discriminating between the g-and-h and the g distribution, which is a special case of the former obtained when the parameter h is equal to zero. The g distribution is a shifted lognormal, and is therefore suitable for modeling economic and financial quantities. The g-and-h is a more flexible distribution, capable of fitting highly skewed and/or leptokurtic data, but is computationally much more demanding. Accordingly, in practical applications the test is a valuable tool for resolving the tractability-flexibility trade-off between the two distributions. Since the classical result for the asymptotic distribution of the test is not valid in this setup, we derive the null distribution via simulation. Further Monte Carlo experiments allow us to estimate the power function and to perform a comparison with a similar test proposed by Xu and Genton (Comput Stat Data Anal 91:78–91, 2015). Finally, the practical relevance of the test is illustrated by two risk management applications dealing with operational and actuarial losses.
2021
Bee, M., Hambuckers, J., Santi, F., Trapin, L. (2021). Testing a parameter restriction on the boundary for the g-and-h distribution: a simulated approach. COMPUTATIONAL STATISTICS, 36(3 (September)), 2177-2200 [10.1007/s00180-021-01078-3].
Bee, M.; Hambuckers, J.; Santi, F.; Trapin, L.
File in questo prodotto:
File Dimensione Formato  
gdist_CompStatR1NoRed.pdf

Open Access dal 09/02/2022

Descrizione: AAM
Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 398.33 kB
Formato Adobe PDF
398.33 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/809125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact