Antioxidant interactions of γ-terpinene with α-tocopherol mimic 2,2,5,7,8-pentamethyl-6-chromanol (PMHC) and caffeic acid phenethyl ester (CAPE), used as models, respectively, of mono- and poly-phenols were demonstrated by differential oximetry during the inhibited autoxidation of model substrates: stripped sunflower oil, squalene, and styrene. With all substrates, γ-terpinene acts synergistically regenerating the chain-breaking antioxidants PMHC and CAPE from their radicals, via the formation of hydroperoxyl radicals. The inhibition duration for mixtures PMHC/γ-terpinene and CAPE/γ-terpinene increased with γ-terpinene concentration, while rate constants for radical-trapping were unchanged by γ-terpinene, being 3.1 × 106 and 4.8 × 105 M 1s 1 for PMHC and CAPE in chlorobenzene (30 ◦C). Using 3,5-di-tert-butylcatechol and 3,5-di-tert-butyl-1,2-bezoquinone we demonstrate that γ-terpinene can reduce quinones to catechols enabling their antioxidant activity. The different synergy mechanism of γ-terpinene with mono- and poly-phenolic antioxidants is discussed and its relevance is proven in homogenous lipids using natural α-tocopherol and hydroxytyrosol as antioxidants, calling for further studies in heterogenous food products.

Guo, Y., Baschieri Andrea, A., Valgimigli, L. (2021). Synergic Antioxidant Activity of γ-Terpinene with Phenols and Polyphenols Enabled by Hydroperoxyl Radicals. FOOD CHEMISTRY, 345, 1-8 [10.1016/j.foodchem.2020.128468].

Synergic Antioxidant Activity of γ-Terpinene with Phenols and Polyphenols Enabled by Hydroperoxyl Radicals

Guo, Yafang;Baschieri Andrea;Amorati Riccardo;Valgimigli, Luca
2021

Abstract

Antioxidant interactions of γ-terpinene with α-tocopherol mimic 2,2,5,7,8-pentamethyl-6-chromanol (PMHC) and caffeic acid phenethyl ester (CAPE), used as models, respectively, of mono- and poly-phenols were demonstrated by differential oximetry during the inhibited autoxidation of model substrates: stripped sunflower oil, squalene, and styrene. With all substrates, γ-terpinene acts synergistically regenerating the chain-breaking antioxidants PMHC and CAPE from their radicals, via the formation of hydroperoxyl radicals. The inhibition duration for mixtures PMHC/γ-terpinene and CAPE/γ-terpinene increased with γ-terpinene concentration, while rate constants for radical-trapping were unchanged by γ-terpinene, being 3.1 × 106 and 4.8 × 105 M 1s 1 for PMHC and CAPE in chlorobenzene (30 ◦C). Using 3,5-di-tert-butylcatechol and 3,5-di-tert-butyl-1,2-bezoquinone we demonstrate that γ-terpinene can reduce quinones to catechols enabling their antioxidant activity. The different synergy mechanism of γ-terpinene with mono- and poly-phenolic antioxidants is discussed and its relevance is proven in homogenous lipids using natural α-tocopherol and hydroxytyrosol as antioxidants, calling for further studies in heterogenous food products.
2021
Guo, Y., Baschieri Andrea, A., Valgimigli, L. (2021). Synergic Antioxidant Activity of γ-Terpinene with Phenols and Polyphenols Enabled by Hydroperoxyl Radicals. FOOD CHEMISTRY, 345, 1-8 [10.1016/j.foodchem.2020.128468].
Guo, Yafang; Baschieri Andrea, Amorati, Riccardo; Valgimigli, Luca
File in questo prodotto:
File Dimensione Formato  
Article_+11585-806961+Valgimigli-1.pdf

Open Access dal 27/10/2021

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/806961
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 55
social impact