We investigate the problem of counting tropical genus g curves in g-dimensional tropical abelian varieties. We do this by studying maps from principally polarized tropical abelian varieties into a fixed abelian variety. For g = 2, 3, we prove that the tropical count matches the count provided in [Göt98, BL99b, LS02] in the complex setting.

Halle, L.H., Rose, S.C.F. (2017). Tropical count of curves on abelian varieties. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 11(1), 219-248 [10.4310/CNTP.2017.v11.n1.a5].

Tropical count of curves on abelian varieties

Halle, Lars Halvard;
2017

Abstract

We investigate the problem of counting tropical genus g curves in g-dimensional tropical abelian varieties. We do this by studying maps from principally polarized tropical abelian varieties into a fixed abelian variety. For g = 2, 3, we prove that the tropical count matches the count provided in [Göt98, BL99b, LS02] in the complex setting.
2017
Halle, L.H., Rose, S.C.F. (2017). Tropical count of curves on abelian varieties. COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 11(1), 219-248 [10.4310/CNTP.2017.v11.n1.a5].
Halle, Lars Halvard; Rose, Simon C. F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/806485
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact