We present a Geometric Invariant Theory (GIT) construction which allows us to construct good projective degenerations of Hilbert schemes of points for simple degenerations. A comparison with the construction of Li and Wu shows that ourGIT stack and the stack they construct are isomorphic, as are the associated coarse moduli schemes. Our construction is sufficiently explicit to obtain good control over the geometry of the singular fibres. We illustrate this by giving a concrete description of degenerations of degree n Hilbert schemes of a simple degeneration with two components.

Gulbrandsen M.G., Halle L.H., Hulek K. (2019). A git construction of degenerations of hilbert schemes of points. DOCUMENTA MATHEMATICA, 24, 421-472 [10.25537/dm.2019v24.421-472].

A git construction of degenerations of hilbert schemes of points

Halle L. H.;
2019

Abstract

We present a Geometric Invariant Theory (GIT) construction which allows us to construct good projective degenerations of Hilbert schemes of points for simple degenerations. A comparison with the construction of Li and Wu shows that ourGIT stack and the stack they construct are isomorphic, as are the associated coarse moduli schemes. Our construction is sufficiently explicit to obtain good control over the geometry of the singular fibres. We illustrate this by giving a concrete description of degenerations of degree n Hilbert schemes of a simple degeneration with two components.
2019
Gulbrandsen M.G., Halle L.H., Hulek K. (2019). A git construction of degenerations of hilbert schemes of points. DOCUMENTA MATHEMATICA, 24, 421-472 [10.25537/dm.2019v24.421-472].
Gulbrandsen M.G.; Halle L.H.; Hulek K.
File in questo prodotto:
File Dimensione Formato  
DM24-2019.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 492.42 kB
Formato Adobe PDF
492.42 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/806353
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact