Defining and reliably finding a canonical orientation for 3D surfaces is key to many Computer Vision and Robotics applications. This task is commonly addressed by handcrafted algorithms exploiting geometric cues deemed as distinctive and robust by the designer. Yet, one might conjecture that humans learn the notion of the inherent orientation of 3D objects from experience and that machines may do so alike. In this work, we show the feasibility of learning a robust canonical orientation for surfaces represented as point clouds. Based on the observation that the quintessential property of a canonical orientation is equivariance to 3D rotations, we propose to employ Spherical CNNs, a recently introduced machinery that can learn equivariant representations defined on the Special Ortoghonal group SO(3). Specifically, spherical correlations compute feature maps whose elements define 3D rotations. Our method learns such feature maps from raw data by a self-supervised training procedure and robustly selects a rotation to transform the input point cloud into a learned canonical orientation. Thereby, we realize the first end-to-end learning approach to define and extract the canonical orientation of 3D shapes, which we aptly dub Compass. Experiments on several public datasets prove its effectiveness at orienting local surface patches as well as whole objects.

Riccardo Spezialetti, F.S. (2020). Learning to Orient Surfaces by Self-supervised Spherical CNNs.

Learning to Orient Surfaces by Self-supervised Spherical CNNs

Riccardo Spezialetti;Federico Stella;Samuele Salti;Luigi Di Stefano
2020

Abstract

Defining and reliably finding a canonical orientation for 3D surfaces is key to many Computer Vision and Robotics applications. This task is commonly addressed by handcrafted algorithms exploiting geometric cues deemed as distinctive and robust by the designer. Yet, one might conjecture that humans learn the notion of the inherent orientation of 3D objects from experience and that machines may do so alike. In this work, we show the feasibility of learning a robust canonical orientation for surfaces represented as point clouds. Based on the observation that the quintessential property of a canonical orientation is equivariance to 3D rotations, we propose to employ Spherical CNNs, a recently introduced machinery that can learn equivariant representations defined on the Special Ortoghonal group SO(3). Specifically, spherical correlations compute feature maps whose elements define 3D rotations. Our method learns such feature maps from raw data by a self-supervised training procedure and robustly selects a rotation to transform the input point cloud into a learned canonical orientation. Thereby, we realize the first end-to-end learning approach to define and extract the canonical orientation of 3D shapes, which we aptly dub Compass. Experiments on several public datasets prove its effectiveness at orienting local surface patches as well as whole objects.
2020
Advances in Neural Information Processing Systems 33 (NeurIPS 2020)
1
12
Riccardo Spezialetti, F.S. (2020). Learning to Orient Surfaces by Self-supervised Spherical CNNs.
Riccardo Spezialetti, Federico Stella, Marlon Marcon, Luciano Silva, Samuele Salti, Luigi Di Stefano
File in questo prodotto:
File Dimensione Formato  
2020_NeurIPS-learning-to-orient-surfaces-by-self-supervised-spherical-cnns-Paper.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 1.01 MB
Formato Adobe PDF
1.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/805348
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 0
social impact