The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length.

Bagno E., Biagioli R., Novick M. (2015). Depth in Coxeter groups of type B. Nancy : Discrete Mathematics and Theoretical Computer Science.

Depth in Coxeter groups of type B

Biagioli R.;
2015

Abstract

The depth statistic was defined for every Coxeter group in terms of factorizations of its elements into product of reflections. Essentially, the depth gives the minimal path cost in the Bruaht graph, where the edges have prescribed weights. We present an algorithm for calculating the depth of a signed permutation which yields a simple formula for this statistic. We use our algorithm to characterize signed permutations having depth equal to length. These are the fully commutative top-and-bottom elements defined by Stembridge. We finally give a characterization of the signed permutations in which the reflection length coincides with both the depth and the length.
2015
27th International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2015
913
924
Bagno E., Biagioli R., Novick M. (2015). Depth in Coxeter groups of type B. Nancy : Discrete Mathematics and Theoretical Computer Science.
Bagno E.; Biagioli R.; Novick M.
File in questo prodotto:
File Dimensione Formato  
hal-01337760.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 448.75 kB
Formato Adobe PDF
448.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/802801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact