We give a new description of the flag major index, introduced by Adin and Roichman, by using a major index defined by Reiner. This allows us to establish a connection between an identity of Reiner and some more recent results due to Chow and Gessel. Furthermore we generalize the main identity of Chow and Gessel by computing the four-variate generating series of descents, major index, length, and number of negative entries over Coxeter groups of type B and D.

Biagioli R, Zeng J (2010). On some analogous of Carlitz’s identity for the hyperoctahedral group. SÉMINAIRE LOTHARINGIEN DE COMBINATOIRE, 61, 1-13.

On some analogous of Carlitz’s identity for the hyperoctahedral group

Biagioli R;
2010

Abstract

We give a new description of the flag major index, introduced by Adin and Roichman, by using a major index defined by Reiner. This allows us to establish a connection between an identity of Reiner and some more recent results due to Chow and Gessel. Furthermore we generalize the main identity of Chow and Gessel by computing the four-variate generating series of descents, major index, length, and number of negative entries over Coxeter groups of type B and D.
2010
Biagioli R, Zeng J (2010). On some analogous of Carlitz’s identity for the hyperoctahedral group. SÉMINAIRE LOTHARINGIEN DE COMBINATOIRE, 61, 1-13.
Biagioli R; Zeng J
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/802769
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact