We give explicit combinatorial product formulas for the polynomials encoding the dimensions of the spaces of extensions of (g,p)-generalized Verma modules, in the cases when (g,p) corresponds to an indecomposable classic Hermitian symmetric pair. The formulas imply that these dimensions are combinatorial invariants. We also discuss how these polynomials, defined by Shelton, are related to the parabolic R-polynomials introduced by Deodhar.

Biagioli R (2004). Closed product formulas for extensions of generalized Verma modules. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 356, 159-184 [10.1090/S0002-9947-03-03037-X].

Closed product formulas for extensions of generalized Verma modules

Biagioli R
2004

Abstract

We give explicit combinatorial product formulas for the polynomials encoding the dimensions of the spaces of extensions of (g,p)-generalized Verma modules, in the cases when (g,p) corresponds to an indecomposable classic Hermitian symmetric pair. The formulas imply that these dimensions are combinatorial invariants. We also discuss how these polynomials, defined by Shelton, are related to the parabolic R-polynomials introduced by Deodhar.
2004
Biagioli R (2004). Closed product formulas for extensions of generalized Verma modules. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 356, 159-184 [10.1090/S0002-9947-03-03037-X].
Biagioli R
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/802763
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact