We prove that a conjecture of Fomin, Fulton, Li, and Poon, associated to ordered pairs of partitions, holds for many infinite families of such pairs. We also show that the bounded height case can be reduced to checking that the conjecture holds for a finite number of pairs, for any given height. Moreover, we propose a natural generalization of the conjecture to the case of skew shapes. (c) 2005 Elsevier Inc. All rights reserved.

Bergeron F, Biagioli R, Rosas MH (2006). Inequalities between Littlewood-Richardson coefficients. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 113, 567-590 [10.1016/j.jcta.2005.05.002].

Inequalities between Littlewood-Richardson coefficients

Biagioli R;
2006

Abstract

We prove that a conjecture of Fomin, Fulton, Li, and Poon, associated to ordered pairs of partitions, holds for many infinite families of such pairs. We also show that the bounded height case can be reduced to checking that the conjecture holds for a finite number of pairs, for any given height. Moreover, we propose a natural generalization of the conjecture to the case of skew shapes. (c) 2005 Elsevier Inc. All rights reserved.
2006
Bergeron F, Biagioli R, Rosas MH (2006). Inequalities between Littlewood-Richardson coefficients. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 113, 567-590 [10.1016/j.jcta.2005.05.002].
Bergeron F; Biagioli R; Rosas MH
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/802757
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact