The majority of gastrointestinal stromal tumors (GIST) carry a sensitive primary KIT mutation, but approximately 5% to 10% of cases harbor activating mutations of platelet-derived growth factor receptor (PDGFRA), mainly involving the A-loop encoded by exon 18 (~5%), or more rarely the JM domain, encoded by exon 12 (~1%), or the ATP binding domain encoded by exon 14 (<1%). The most frequent mutation is the substitution at position 842 in the A-loop of an aspartic acid (D) with a valine (V) in exon 18, widely recognized as D842V. This mutation, as well known, provides primary resistance to imatinib and sunitinib. Thus, until few years ago, no active drugs were available for this subtype of GIST. Conversely, recent years have witnessed the development of a new specific inhibitor—avapritinib—that has been studied in in vitro and clinical setting with promising results. In light of this primary resistance to conventional therapies, the biological background of D842V-mutant GIST has been deeply investigated to better understand what features characterize this peculiar subset of GIST, and some promising insights have emerged. Hereinafter, we present a comprehensive overview on the clinical features and the molecular background of this rare subtype of GIST.
Alessandro Rizzo, M.A.P. (2021). The Identity of PDGFRA D842V-Mutant Gastrointestinal Stromal Tumors (GIST). CANCERS, 13, 1-9 [10.3390/cancers13040705].
The Identity of PDGFRA D842V-Mutant Gastrointestinal Stromal Tumors (GIST)
Alessandro RizzoPrimo
;Maria Abbondanza PantaleoSecondo
;Annalisa Astolfi;Valentina IndioPenultimo
;Margherita NanniniUltimo
2021
Abstract
The majority of gastrointestinal stromal tumors (GIST) carry a sensitive primary KIT mutation, but approximately 5% to 10% of cases harbor activating mutations of platelet-derived growth factor receptor (PDGFRA), mainly involving the A-loop encoded by exon 18 (~5%), or more rarely the JM domain, encoded by exon 12 (~1%), or the ATP binding domain encoded by exon 14 (<1%). The most frequent mutation is the substitution at position 842 in the A-loop of an aspartic acid (D) with a valine (V) in exon 18, widely recognized as D842V. This mutation, as well known, provides primary resistance to imatinib and sunitinib. Thus, until few years ago, no active drugs were available for this subtype of GIST. Conversely, recent years have witnessed the development of a new specific inhibitor—avapritinib—that has been studied in in vitro and clinical setting with promising results. In light of this primary resistance to conventional therapies, the biological background of D842V-mutant GIST has been deeply investigated to better understand what features characterize this peculiar subset of GIST, and some promising insights have emerged. Hereinafter, we present a comprehensive overview on the clinical features and the molecular background of this rare subtype of GIST.File | Dimensione | Formato | |
---|---|---|---|
Rizzo Cancers 2021.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.