This work presents InfiniWolf, a novel multi-sensor smartwatch that can achieve self-sustainability exploiting thermal and solar energy harvesting, performing computationally high demanding tasks. The smartwatch embeds both a System-on-Chip (SoC) with an ARM Cortex-M processor and Bluetooth Low Energy (BLE) and Mr. Wolf, an open-hardware RISC-V based parallel ultra-low-power processor that boosts the processing capabilities on board by more than one order of magnitude, while also increasing energy efficiency. We demonstrate its functionality based on a sample application scenario performing stress detection with multi-layer artificial neural networks on a wearable multi-sensor bracelet. Experimental results show the benefits in terms of energy efficiency and latency of Mr. Wolf over an ARM Cortex-M4F micro-controllers and the possibility, under specific assumptions, to be self-sustainable using thermal and solar energy harvesting while performing up to 24 stress classifications per minute in indoor conditions.

Magno M., Wang X., Eggimann M., Cavigelli L., Benini L. (2020). InfiniWolf: Energy Efficient Smart Bracelet for Edge Computing with Dual Source Energy Harvesting. Institute of Electrical and Electronics Engineers Inc. [10.23919/DATE48585.2020.9116218].

InfiniWolf: Energy Efficient Smart Bracelet for Edge Computing with Dual Source Energy Harvesting

Benini L.
2020

Abstract

This work presents InfiniWolf, a novel multi-sensor smartwatch that can achieve self-sustainability exploiting thermal and solar energy harvesting, performing computationally high demanding tasks. The smartwatch embeds both a System-on-Chip (SoC) with an ARM Cortex-M processor and Bluetooth Low Energy (BLE) and Mr. Wolf, an open-hardware RISC-V based parallel ultra-low-power processor that boosts the processing capabilities on board by more than one order of magnitude, while also increasing energy efficiency. We demonstrate its functionality based on a sample application scenario performing stress detection with multi-layer artificial neural networks on a wearable multi-sensor bracelet. Experimental results show the benefits in terms of energy efficiency and latency of Mr. Wolf over an ARM Cortex-M4F micro-controllers and the possibility, under specific assumptions, to be self-sustainable using thermal and solar energy harvesting while performing up to 24 stress classifications per minute in indoor conditions.
2020
Proceedings of the 2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020
342
345
Magno M., Wang X., Eggimann M., Cavigelli L., Benini L. (2020). InfiniWolf: Energy Efficient Smart Bracelet for Edge Computing with Dual Source Energy Harvesting. Institute of Electrical and Electronics Engineers Inc. [10.23919/DATE48585.2020.9116218].
Magno M.; Wang X.; Eggimann M.; Cavigelli L.; Benini L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/795293
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 11
social impact