Accurate multiclass classification of electroencephalography (EEG) signals is still a challenging task towards the development of reliable motor imagery brain-computer interfaces (MI-BCIs). Deep learning algorithms have been recently used in this area to deliver a compact and accurate model. Reaching high-level of accuracy requires to store subjects-specific trained models that cannot be achieved with an otherwise compact model trained globally across all subjects. In this paper, we propose a new methodology that closes the gap between these two extreme modeling approaches: we reduce the overall storage requirements by superimposing many subject-specific models into one single model such that it can be reliably decomposed, after retraining, to its constituent models while providing a trade-off between compression ratio and accuracy. Our method makes the use of unexploited capacity of trained models by orthogonalizing parameters in a hyperdimensional space, followed by iterative retraining to compensate noisy decomposition. This method can be applied to various layers of deep inference models. Experimental results on the 4-class BCI competition IV-2a dataset show that our method exploits unutilized capacity for compression and surpasses the accuracy of two state-of-the-art networks: (1) it compresses the smallest network, EEGNet [1], by 1.9×, and increases its accuracy by 2.41% (74.73% vs. 72.32%); (2) using a relatively larger Shallow ConvNet [2], our method achieves 2.95 x compression as well as 1.4% higher accuracy (75.05% vs. 73.59%).

Hersche M., Rupp P., Benini L., Rahimi A. (2020). Compressing Subject-specific Brain-Computer Interface Models into One Model by Superposition in Hyperdimensional Space. Institute of Electrical and Electronics Engineers Inc. [10.23919/DATE48585.2020.9116447].

Compressing Subject-specific Brain-Computer Interface Models into One Model by Superposition in Hyperdimensional Space

Benini L.;
2020

Abstract

Accurate multiclass classification of electroencephalography (EEG) signals is still a challenging task towards the development of reliable motor imagery brain-computer interfaces (MI-BCIs). Deep learning algorithms have been recently used in this area to deliver a compact and accurate model. Reaching high-level of accuracy requires to store subjects-specific trained models that cannot be achieved with an otherwise compact model trained globally across all subjects. In this paper, we propose a new methodology that closes the gap between these two extreme modeling approaches: we reduce the overall storage requirements by superimposing many subject-specific models into one single model such that it can be reliably decomposed, after retraining, to its constituent models while providing a trade-off between compression ratio and accuracy. Our method makes the use of unexploited capacity of trained models by orthogonalizing parameters in a hyperdimensional space, followed by iterative retraining to compensate noisy decomposition. This method can be applied to various layers of deep inference models. Experimental results on the 4-class BCI competition IV-2a dataset show that our method exploits unutilized capacity for compression and surpasses the accuracy of two state-of-the-art networks: (1) it compresses the smallest network, EEGNet [1], by 1.9×, and increases its accuracy by 2.41% (74.73% vs. 72.32%); (2) using a relatively larger Shallow ConvNet [2], our method achieves 2.95 x compression as well as 1.4% higher accuracy (75.05% vs. 73.59%).
2020
Proceedings of the 2020 Design, Automation and Test in Europe Conference and Exhibition, DATE 2020
246
251
Hersche M., Rupp P., Benini L., Rahimi A. (2020). Compressing Subject-specific Brain-Computer Interface Models into One Model by Superposition in Hyperdimensional Space. Institute of Electrical and Electronics Engineers Inc. [10.23919/DATE48585.2020.9116447].
Hersche M.; Rupp P.; Benini L.; Rahimi A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/795281
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact