The performance of the ATLAS Inner Detector alignment has been studied using pp collision data at √s = 13 TeV collected by the ATLAS experiment during Run 2 (2015–2018) of the Large Hadron Collider (LHC). The goal of the detector alignment is to determine the detector geometry as accurately as possible and correct for time-dependent movements. The Inner Detector alignment is based on the minimization of track-hit residuals in a sequence of hierarchical levels, from global mechanical assembly structures to local sensors. Subsequent levels have increasing numbers of degrees of freedom; in total there are almost 750,000. The alignment determines detector geometry on both short and long timescales, where short timescales describe movements within an LHC fill. The performance and possible track parameter biases originating from systematic detector deformations are evaluated. Momentum biases are studied using resonances decaying to muons or to electrons. The residual sagitta bias and momentum scale bias after alignment are reduced to less than ∼ 0.1 TeV−1 and 0.9 × 10−3, respectively. Impact parameter biases are also evaluated using tracks within jets.

Aad G., A.B. (2020). Alignment of the ATLAS Inner Detector in Run 2. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS, 80(12), 1-41 [10.1140/epjc/s10052-020-08700-6].

Alignment of the ATLAS Inner Detector in Run 2

Alberghi G. L.;Alfonsi F.;Bellagamba L.;Bindi M.;Boscherini D.;Cabras G.;Caforio D.;Carratta G.;De Castro S.;Fabbri F.;Fabbri L.;Franchini M.;Gabrielli A.;Giacobbe B.;Massa L.;Monzani S.;Polini A.;Rinaldi L.;Romano M.;Sbarra C.;Sbrizzi A.;Semprini-Cesari N.;Sioli M.;Todome K.;Valentinetti S.;Villa M.;Vittori C.;Vivarelli I.;Zoccoli A.;
2020

Abstract

The performance of the ATLAS Inner Detector alignment has been studied using pp collision data at √s = 13 TeV collected by the ATLAS experiment during Run 2 (2015–2018) of the Large Hadron Collider (LHC). The goal of the detector alignment is to determine the detector geometry as accurately as possible and correct for time-dependent movements. The Inner Detector alignment is based on the minimization of track-hit residuals in a sequence of hierarchical levels, from global mechanical assembly structures to local sensors. Subsequent levels have increasing numbers of degrees of freedom; in total there are almost 750,000. The alignment determines detector geometry on both short and long timescales, where short timescales describe movements within an LHC fill. The performance and possible track parameter biases originating from systematic detector deformations are evaluated. Momentum biases are studied using resonances decaying to muons or to electrons. The residual sagitta bias and momentum scale bias after alignment are reduced to less than ∼ 0.1 TeV−1 and 0.9 × 10−3, respectively. Impact parameter biases are also evaluated using tracks within jets.
2020
Aad G., A.B. (2020). Alignment of the ATLAS Inner Detector in Run 2. THE EUROPEAN PHYSICAL JOURNAL. C, PARTICLES AND FIELDS, 80(12), 1-41 [10.1140/epjc/s10052-020-08700-6].
Aad G., Abbott B., Abbott D.C., Abud A.A., Abeling K., Abhayasinghe D.K., Abidi S.H., AbouZeid O.S., Abraham N.L., Abramowicz H., Abreu H., Abulaiti Y...espandi
File in questo prodotto:
File Dimensione Formato  
Aad2020_Article_AlignmentOfTheATLASInnerDetect.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 5.05 MB
Formato Adobe PDF
5.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/791163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact