Given a positive integer m and a group-word w, we consider a finite group G such that w(G) ≠ 1 and all centralizers of non-trivial w-values have order at most m. We prove that if w=v(x1q1,⋯,xkqk), where v is a multilinear commutator word and q1, ⋯ , qk are p-powers for some prime p, then the order of G is bounded in terms of w and m only. Similar results hold when w is the nth Engel word or the word w= [xn, y1, ⋯ , yk] with k≥ 1.

Detomi E., Morigi M., Shumyatsky P. (2020). Finite groups with small centralizers of word-values. MONATSHEFTE FÜR MATHEMATIK, 191(2), 257-265 [10.1007/s00605-019-01292-8].

Finite groups with small centralizers of word-values

Morigi M.;
2020

Abstract

Given a positive integer m and a group-word w, we consider a finite group G such that w(G) ≠ 1 and all centralizers of non-trivial w-values have order at most m. We prove that if w=v(x1q1,⋯,xkqk), where v is a multilinear commutator word and q1, ⋯ , qk are p-powers for some prime p, then the order of G is bounded in terms of w and m only. Similar results hold when w is the nth Engel word or the word w= [xn, y1, ⋯ , yk] with k≥ 1.
2020
Detomi E., Morigi M., Shumyatsky P. (2020). Finite groups with small centralizers of word-values. MONATSHEFTE FÜR MATHEMATIK, 191(2), 257-265 [10.1007/s00605-019-01292-8].
Detomi E.; Morigi M.; Shumyatsky P.
File in questo prodotto:
File Dimensione Formato  
DMS2020_Small_centralizers_revised.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 444.54 kB
Formato Adobe PDF
444.54 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/789432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact