Given a positive integer m and a group-word w, we consider a finite group G such that w(G) ≠ 1 and all centralizers of non-trivial w-values have order at most m. We prove that if w=v(x1q1,⋯,xkqk), where v is a multilinear commutator word and q1, ⋯ , qk are p-powers for some prime p, then the order of G is bounded in terms of w and m only. Similar results hold when w is the nth Engel word or the word w= [xn, y1, ⋯ , yk] with k≥ 1.
Detomi E., Morigi M., Shumyatsky P. (2020). Finite groups with small centralizers of word-values. MONATSHEFTE FÜR MATHEMATIK, 191(2), 257-265 [10.1007/s00605-019-01292-8].
Finite groups with small centralizers of word-values
Morigi M.;
2020
Abstract
Given a positive integer m and a group-word w, we consider a finite group G such that w(G) ≠ 1 and all centralizers of non-trivial w-values have order at most m. We prove that if w=v(x1q1,⋯,xkqk), where v is a multilinear commutator word and q1, ⋯ , qk are p-powers for some prime p, then the order of G is bounded in terms of w and m only. Similar results hold when w is the nth Engel word or the word w= [xn, y1, ⋯ , yk] with k≥ 1.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DMS2020_Small_centralizers_revised.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
444.54 kB
Formato
Adobe PDF
|
444.54 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.