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Finite groups with small centralizers of
word-values

Eloisa Detomi, Marta Morigi, and Pavel Shumyatsky

Abstract. Given a positive integer m and a group-word w, we
consider a finite group G such that w(G) 6= 1 and all centralizers
of non-trivial w-values have order at most m. We prove that if
w = v(xq11 , . . . , x

qk
k ), where v is a multilinear commutator word

and q1, . . . , qk are p-powers for some prime p, then the order of G
is bounded in terms of w and m only. Similar results hold when w
is the nth Engel word or the word w = [xn, y1, . . . , yk] with k ≥ 1.

1. Introduction

The present paper grew out of the observation made in [3] that
if w is a multilinear commutator word and G is a profinite group in
which all w-values have finite centralizers, then either w(G) = 1 or G
is finite. Here, as usual, w(G) denotes the subgroup generated by the
w-values in G. By a multilinear commutator word we mean a word
which is obtained by nesting commutators, but using always different
variables. Such words are also known under the name of outer com-
mutator words and are precisely the words that can be written in the
form of multilinear Lie monomials.

Naturally, a corresponding result for finite groups must be of quan-
titative nature, so in this paper we deal with the following family of
questions.

Let m be a positive integer, w a group-word, and G a finite group
such that w(G) 6= 1 and CG(x) has order at most m for each nontrivial
w-value x of G. Does it follows that the order of G is bounded in terms
of m and w only?

It is not difficult to see that for some words w the answer is negative.
In particular, this happens when w = xn, with n > 1 (see Section 3).
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On the other hand, it is well known that if all nontrivial elements of a
finite group G have centralizers of order at most m, then the order of
G is m-bounded. An easy way to see this is via observation that every
Sylow p-subgroup P of G, having nontrivial centre, has order at most
m. Therefore |P | ≤ m and so |G| ≤ m!. In the published literature
one can find results containing better bounds for |G| (in particular, a
result by Isaacs [7] says that |G| ≤ m2 whenever G is soluble).

In this paper we show that there are other words for which the
question has an affirmative answer.

Theorem 1.1. Let p be a prime, let q1, . . . , qk be p-powers and
w = w(x1, . . . , xk) a multilinear commutator word of weight at least 2.
Set w0 = w(xq11 , . . . , x

qk
k ). Assume that G is a finite group such that

w0(G) 6= 1 and |CG(x)| ≤ m for every nontrivial w0-value x of G.
Then the order of G is (w0,m)-bounded.

Recall that the nth Engel word is defined inductively by [x,1 y] =
[x, y], and [x,n y] = [[xn−1y], y].

Theorem 1.2. Let w = [x,n y] be the nth Engel word or the word
w = [xn, y1, . . . , yk] with k ≥ 1. Let m be an integer and G a finite
group with the properties that w(G) 6= 1 and |CG(x)| ≤ m for every
nontrivial w-value x of G. Then the order of G is (w,m)-bounded.

Throughout the paper we use the expression “(a, b, . . . )-bounded”
to mean that a quantity is finite and bounded by a certain number
depending only on the parameters a, b, . . . . Given a word w and a
group G, we will denote by Gw the set of all values of w in G.

2. Preliminaries

Most of results given in this section are well known and are included
simply for the reader’s convenience.

Lemma 2.1. Let ϕ be an automorphism of a finite group G. Then

i) |CG/N(ϕ)| ≤ |CG(ϕ)| for every ϕ-invariant normal subgroup
N of G.

ii) If |ϕ| and |G| are coprime and [G,ϕ, ϕ] = 1, then ϕ = 1.

Proof. The first statement is Lemma 2.12 in [8]. The second one
is a well-known result about coprime action (see for instance Theorem
3.6 in [5]) � �

Lemma 2.2. [8, Corollary 2.7] Let p be a prime and let ϕ be an
automorphism of order ps of a finite abelian p-group A. If |CA(ϕ)| =
pm, then the rank of A is at most mps.
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From Lemmas 2.1 and 2.2, using Burnside’s Basis Theorem, we
deduce the following result.

Corollary 2.3. If a finite p-group P admits an automorphism ϕ
of order ps with exactly pm fixed points, then P is generated by at most
mps elements.

Lemma 2.4. [8, Theorem 12.15] If a finite p-group P admits an au-
tomorphism ϕ of order ps with exactly pm fixed points, then P contains
a characteristic subgroup of (p,m, s)-bounded index which is soluble of
(p, s)-bounded derived length.

The following theorem, due to Hartley, depends on the classification
of finite simple groups.

Theorem 2.5. [6, Theorem A] There exists an integer-valued func-
tion f such that if G is a finite group containing an element x with
|CG(x)| ≤ m, then G has a soluble normal subgroup of index at most
f(m).

Let Zi(G) denote the ith term of the upper central series of a group
G.

Lemma 2.6. Let G be a finite group having an element g such that
|CG(g)| ≤ m. Then |Zi(G)| ≤ mi for each i.

Proof. Indeed, by Lemma 2.1 (i) we have

|Zj(G)/Zj−1(G)| ≤ |CG/Zj−1(G)(gZj−1(G))| ≤ |CG(g)| ≤ m.

In other words, all factors of the upper central series of G have orders
at most m. Hence, the lemma follows. � �

It will be convenient to fix the following hypothesis:

Hypothesis 1. Let w be a group-word, m an integer and G a finite
group such that w(G) 6= 1 and |CG(x)| ≤ m for every nontrivial w-value
x of G.

Note that under Hypothesis 1, every w-value in G has order at most
m.

3. Proof of Theorem 1.1

We recall that multilinear commutator words and their subcom-
mutators are recursively defined as follows: the word w = x in one
variable x is a multilinear commutator word of weight 1 with x as its
only subcommutator. If u and v are multilinear commutator words of
weight r and s involving disjoint sets of variables, the word w = [u, v]



4 ELOISA DETOMI, MARTA MORIGI, AND PAVEL SHUMYATSKY

is a multilinear commutator word of weight r + s, and its subcommu-
tators are w itself and all subcommutators of u and v. All multilinear
commutator words are obtained in this way.

An important family of multilinear commutator words is formed by
the derived words δk, on 2k variables, which are defined recursively by

δ0 = x1, δk = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1, . . . , x2k)].

Of course δk(G) = G(k) is the kth derived group of G. We will need
the following well-known result (see for example [9, Lemma 4.1]).

Lemma 3.1. Let G be a group and let w be a multilinear commu-
tator word on k variables. Then each δk-value is a w-value.

Let G be a group and let w = w(x1, . . . , xk) be a word. The mar-
ginal subgroup w∗(G) of G corresponding to the word w is defined as
the set of all x ∈ G such that

w(g1, . . . , xgi, . . . , gk) = w(g1, . . . , gix, . . . , gk) = w(g1, . . . , gi, . . . , gk)

for all g1, . . . , gk ∈ G and 1 ≤ i ≤ k. It is well known that w∗(G) is
a characteristic subgroup of G and that [w∗(G), w(G)] = 1. If w is a
multilinear commutator word and N is a normal subgroup of a group
G containing no nontrivial w-values, then N is contained w∗(G) and,
in particular, it centralizes w(G) (see e.g. [10, Theorem 2.3] or the
comment after Lemma 4.1 in [3]).

Proposition 3.2. Assume Hypothesis 1 with w = w(x1, . . . , xk) be-
ing a multilinear commutator word. Then the order of G is m-bounded.

Proof. By Theorem 2.5, G has a soluble normal subgroup H of
m-bounded index. Let

1 = A0 ≤ A1 ≤ · · · ≤ At = H

be a characteristic series of H with the property that each section
Ai+1/Ai is abelian. Let i be the greatest integer such that Ai∩Gw = 1.
As mentioned above, Ai is contained in the marginal subgroup of G,
and hence it centralizes w(G). In particular |Ai| ≤ m.

If i = t, then the order of G is m-bounded, since At = H has m-
bounded index in G. Otherwise, i < t and, by the maximality of i,
the subgroup Ai+1 contains a nontrivial w-value. So Ai+1/Ai contains
a nontrivial w-value of G/Ai and, by Lemma 2.1 (i), G/Ai satisfies
Hypothesis 1. It follows from Lemma ?? that |G/Ai| is m-bounded. As
Ai has m-bounded order, the order of G is m-bounded as well. � �

In what follows we require an additional hypothesis.
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Hypothesis 2. Let p be a prime and let q1, . . . , qk be p-powers. For
a multilinear commutator word w = w(x1, . . . , xk) of weight at least 2,
set w0 = w(xq11 , . . . , x

qk
k ). Let G be a finite group such that w0(G) 6= 1

and |CG(x)| ≤ m for every nontrivial w0-value x of G.

If u = u(xr, . . . , xs) is a subcommutator of w, we denote by u0 the
word u0 = u(xqrr , . . . , x

qs
s ).

Lemma 3.3. Assume Hypothesis 2 and let T be a normal subgroup
of G containing no nontrivial w0-values of G. Let R be the subgroup
generated by the u0-values of G lying in T , where u ranges over all
subcommutators of w. Then R has (w,m)-bounded order.

Proof. The proof is by induction on the number of subcommuta-
tors v of w such that T ∩Gv0 = 1. Let u be a subcommutator of w of
maximal weight such that T ∩ Gu0 6= 1. By maximality, there exists
a subcommutator v of w such that v = [u, u′] and T ∩ Gv0 = 1. Let
1 6= a ∈ T ∩Gu0 . For every b ∈ T ∩Gu′0

observe that

[a, b] ∈ T ∩Gv0 = 1.

Hence [a, u′0(G)] = 1. Set R1 = 〈T ∩ Gu0〉. Since w0(G) ≤ u′0(G), it
follows that R1 ≤ CG(w0(G)). In particular R1 has order at most m.
By Lemma 2.1 (i), G/R1 satisfies Hypothesis 2. Moreover (T/R1) ∩
(G/R1)u0 = 1. Note that R/R1 is generated by all v0-values of G/R1

lying in T/R1, where v ranges over all subcommutators of w. Hence,
by induction, R/R1 has (w,m)-bounded order. As the order of R1 is
(w,m)-bounded, the lemma follows. � �

Remark 3.4. Note that any multilinear commutator word of weight
at least 2 has the words x and [x, y] as subcommutators. Let q =
max{q1, . . . , qk}. Taking into account that Gxq ≤ Gxqi and G[xq ,yq ] ≤
G[xqi ,yqj ], we observe that, under the assumptions of Lemma 3.3, the
quotient group T/R has exponent dividing q and it contains no non-
trivial commutators of the form [xq, yq] for x, y ∈ G.

Lemma 3.5. Assume Hypothesis 2 and let T be a normal p′-subgroup
of G. Then |T | is (w,m)-bounded.

Proof. Since T is a p′-group, it follows that Tw0 = Tw. If w(T ) 6=
1, by Proposition 3.2, we have that |T | is m-bounded. So assume
w(T ) = 1. In particular, by Lemma 3.1, T is soluble with derived
length at most k. We use induction on the derived length of T . Let
A be the last term of the derived series of T . Note that A is normal
in G. If there exists a nontrivial element in A ∩ Gw0 , then |G| is m-
bounded by Lemma ?? and the same holds for |T |. So, let A∩Gw0 = 1
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and let R be the subgroup defined in Lemma 3.3. Then |R| is (w,m)-
bounded and, by Remark 3.4, the exponent of A/R divides q. Since A
is a p′-subgroup, A/R = 1, hence A ≤ R has (w,m)-bounded order.
Moreover, G/A satisfies Hypothesis 2. By induction, |T/A| is (w,m)-
bounded. Hence |T | is (w,m)-bounded. � �

Lemma 3.6. Assume Hypothesis 2 and let T be a normal p-subgroup
of G. Then |T | is (w0,m)-bounded.

Proof. Assume that T ∩ Gw0 = 1. Then the subgroup R of T
defined in Lemma 3.3 has (w,m)-bounded order. By Remark 3.4, T/R
has exponent dividing q and it contains no nontrivial commutators
of the form [xq, yq] for x, y ∈ G. As R ∩ Gw0 ≤ T ∩ Gw0 = 1, by
Lemma 2.1 (i), we can pass to the quotient G/R and assume without
loss of generality that R = 1. Let g be a nontrivial element of G and
a ∈ T . Since [g−qa, gq]T = [g−q, gq]T is trivial in G/T , we see that
[g−qa, gq] ∈ T. Thus

[g−qa, gq] ∈ T ∩G[xq ,yq ] = 1.

As [a, gq, gq] = [g−qa, gq], it follows that [a, gq, gq] = 1 for every a ∈ T .
In particular, if g ∈ Gw0 and g = grgs, where gr is a p-element and gs

is a p′-element, then
[T, gsq, gsq] = 1.

It follows from Lemma 2.1 (ii) that [T, gsq] = 1. As gs is a p′-element,
we obtain that [T, gs] = 1, so CP (gr) = CP (g). Therefore g induces a
p-automorphism on T , which has order at most m and at most m fixed
points.

Now assume that T ∩ Gw0 6= 1. Then any nontrival element in
T ∩ Gw0 induces a p-automorphism on T , which has order at most m
and at most m fixed points.

In both cases - when T ∩ Gw0 = 1 and when T ∩ Gw0 6= 1 - we
deduce from Lemma 2.4 that T has a soluble characteristic subgroup
T0 of (w0,m)-bounded index and (w0,m)-bounded derived length.

We now argue by induction on the derived length of T0. Let A be
the last term of the derived series of T0. Note that A is normal in G. If
there exists a nontrivial element in A∩Gw0 , then |G| is m-bounded by
Lemma ?? and the same holds for |T |. So asssume that A ∩Gw0 = 1.
As in Lemma 3.3, let RA be the subgroup generated by the u0-values of
G lying in A, where u ranges over all subcommutators of w. Then |RA|
is (w,m)-bounded and, by Remark 3.4, the exponent of A/RA divides
q. Note that, by Lemmas 2.1 and 2.2, A/RA has (w0,m)-bounded
rank. It follows that |A/RA| is (w0,m)-bounded, hence |A| is (w0,m)-
bounded as well. Since G/A satisfies Hypothesis 2, by induction on the
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derived length of T0, we get that |T/A| is (w0,m)-bounded. Hence |T |
is (w0,m)-bounded. � �

Let π be a set of primes dividing the order of a finite soluble group
G. Recall that the π-length lπ(G) of G is the number of π-factors in
the shortest (π, π′)-series of G. It is a well-known corollary of the Hall-
Higman theory that lπ(G) is bounded in terms of the derived length of
a Hall π-subgroup of G (see for example [1] for an explicit bound).

Proof of Theorem 1.1. Assume Hypothesis 2. It follows from
Theorem 2.5 that G has a normal soluble subgroup N of m-bounded
index. Let H be a Hall p′-subgroup of N . Note that Hw0 = Hw. If
w(H) = 1, then it follows from Lemma 3.1 that H has w-bounded
derived length. If w(H) 6= 1, then H satisfies Hypothesis 1 for the
multilinear word w, hence it has m-bounded order by Proposition 3.2.
In both cases, the derived length of H is (w,m)-bounded. The Hall-
Higman theory shows that the p-length of N is (w,m)-bounded. Thus
N has a normal series of (w,m)-bounded length in which every factor
is either a p-group or a p′-group and every subgroup in the series is
normal in G.

Let T be the last term of the series. Either by Lemma 3.5 or by
Lemma 3.6 we get that |T | is (w0,m)-bounded. If w0(G) is contained
in T , then by Lemma ?? we conclude that the order of G is (w0,m)-
bounded. Otherwise, G/T contains a nontrivial w0-value, hence, by
Lemma 2.1 (i), it satisfies Hypothesis 2. By induction on the length
of the above series, the order of G/T is (w0,m)-bounded. Hence the
order of G is (w0,m)-bounded. � �

Remark 3.7. The conclusion of Theorem 1.1 does not hold in gen-
eral when w = x is the multilinear word of length 1.

Indeed, consider the word xn with n ≥ 2. Let K a finite abelian
group of exponent n and H a group of prime order p such that p - n.
Let B be the base group of the wreath product K o H and let G be
the semidirect product of [B,H] by H. We see that G is a Frobenius
group in which xn-values are conjugate to elements of H and hence
their centralizers have order p. On the other hand, K can be chosen of
arbitrary big order so there are no bounds on the order of G here.

4. Proof of Theorem 1.2

A subgroup H of a group G is said to be a right n-Engel subgroup
if all elements of H are right n-Engel, that is

[h,n g] = 1
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for every h ∈ H and g ∈ G.
It is well known that right n-Engel elements belong to the hyper-

centre of G. The following theorem is a special case of Theorem 1 in
[2].

Theorem 4.1. Let G be a finite d-generator group and let H be
a normal right n-Engel subgroup of G. Then there exists an integer
r = r(d, n), depending only on d and n, such that H ≤ Zr(G).

Let w be a word and m an integer. Recall that a finite group G
satisfies Hypothesis 1 if w(G) 6= 1 and |CG(x)| ≤ m for every nontrivial
w-value x.

Lemma 4.2. Assume Hypothesis 1 with w being the nth Engel
word, and let F be a normal subgroup of G such that F ∩ Gw = 1.
Then F has (w,m)-bounded order.

Proof. From the fact that F ∩Gw = 1 we deduce that F is a right
n-Engel subgroup. Hence F is nilpotent. Let p be a prime divisor of
|F | and let P be the Sylow p-subgroup of F . As P is normal in G, we
have [P,n g] = 1 for every g ∈ G. When g is a p′-element, we deduce
from Lemma 2.1 (ii) that g centralizes P . Thus G/CG(P ) is a p-group.

Let x be a nontrivial w-value ofG. Then x induces a p-automorphism
of P of order at most m with at most m fixed points. Thus by Corol-
lary 2.3, P is generated by at most mpm elements. Moreover, since
1 6= |CP (x)| ≤ m, we have p ≤ m. Thus every Sylow p-subgroup P of
F is generated by at most mm+1 elements. Being nilpotent, F is gen-
erated by at most mm+1 elements, as well. So G1 = F 〈x〉 is generated
by at most mm+1 + 1 elements.

Since F ∩Gw = 1, it follows that [f,n g] = 1 for every f ∈ F and g ∈
G1. We deduce from Theorem 4.1 that there exists a (w,m)-bounded
integer i such that F ≤ Zi(G1). Since, by Lemma 2.6, |Zi(G1)| ≤ mi,
we conclude that F has (w,m)-bounded order. � �

The next lemma is the analogue of the previous one for the word
w = [xn, y1, . . . , yk].

Lemma 4.3. Assume Hypothesis 1 with w = [xn, y1, . . . , yk] with
k ≥ 1, and let F be a normal subgroup of G such that F ∩ Gw = 1.
Then F has (w,m)-bounded order.

Proof. From the fact that F ∩ Gw = 1 we deduce that for every
g ∈ G,

[[gn, F ],k−1G] = 1,

hence [gn, F ] ≤ Zk−1(G). So, F centralizes gn in the quotient group
G/Zk−1(G) and therefore [Gn, F ] ≤ Zk−1(G). Note that Zk−1(G) has
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(w,m)-bounded order by Lemma 2.6. If w(G) ≤ Zk−1(G), then the
order of G is (w,m)-bounded by Lemma ??, and the lemma follows.
Otherwise G/Zk−1(G) contains a nontrivial w-value ḡ. For short we
will use the bar notation to denote the images of subgroups in the
quotient group Ḡ = G/Zk−1(G). Since ḡ ∈ Ḡn, we deduce that F̄
centralizes ḡ, hence |F̄ | ≤ m. Therefore F has (w,m)-bounded order,
as desired. � �

Lemma 4.4. Assume Hypothesis 1 with w being either the nth
Engel word or the word w = [xn, y1, . . . , yk] with k ≥ 1, and let F be
a normal nilpotent subgroup of G cointaing a nontrivial w-value of G.
Then F has (w,m)-bounded order.

Proof. Let j be the greatest integer such that Zj(F ) ∩ Gw = 1.
Then by Lemmas 4.2 and 4.3 we deduce that Zj(F ) has (w,m)-bounded
order. Note that our assumptions imply that Zj(F ) 6= F.

For short we will use the bar notation to denote the images of
subgroups and elements in the quotient group Ḡ = G/Zj(F ). Since

Zj+1(F ) ∩ Gw 6= 1 and Zj(F ) ∩ Gw = 1, the centre Z(F̄ ) = Zj+1(F )
contains a nontrivial w-value ḡ of Ḡ. Thus F̄ is a subgroup of CḠ(ḡ),
whose order is at most m by Lemma 2.1 (i). We conclude that F has
(w,m)-bounded order. � �

Recall that the Fitting height of a soluble group G is the length of
a shortest series of G with nilpotent factors.

Proof of Theorem 1.2. Assume Hypothesis 1 with w being ei-
ther the nth Engel word or the word w = [xn, y1, . . . , yk] with k ≥ 1.
By Theorem 2.5, G has a soluble normal subgroup H of m-bounded
index. We claim that there exists an (w,m)-bounded integer e such
that H belongs to the class Y (e, w) of finite groups G in which ev-
ery w-value has order dividing e and w(P ) has exponent dividing e
for every p-Sylow subgroup of G. Indeed, if P is a p-Sylow subgroup
of H, then either w(P ) = 1 or, by Lemma 4.4, the order of w(P ) is
(w,m)-bounded.

Lemma 9 in [4] states that the Fitting height of any soluble group
in Y (e, w) is (e, w)-bounded. Therefore the Fitting height h of H is
(w,m)-bounded. We argue by induction on h.

Let T be the Fitting subgroup of H. Either by Lemma 4.4 or by
Lemmas 4.2 and 4.3 we get that |T | is (w,m)-bounded. If w(G) is
contained in T , then by Lemma ?? we conclude that the order of G is
(w,m)-bounded. Otherwise, G/T contains a nontrivial w-value, hence,
by Lemma 2.1 (i), it satisfies Hypothesis 2. By induction, the order of
G/T is (w,m)-bounded, hence G has (w,m)-bounded order. � �
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