We consider the volume-preserving geometric evolution of the boundary of a set under fractional mean curvature. We show that smooth convex solutions maintain their fractional curvatures bounded for all times, and the long-time asymptotics approach round spheres. The proofs are based on a priori estimates on the inner and outer radii of the solutions.

CINTI E., SINESTRARI C., VALDINOCI E. (2020). CONVEX SETS EVOLVING BY VOLUME-PRESERVING FRACTIONAL MEAN CURVATURE FLOWS. ANALYSIS & PDE, 13(7), 2149-2171 [10.2140/apde.2020.13.2149].

CONVEX SETS EVOLVING BY VOLUME-PRESERVING FRACTIONAL MEAN CURVATURE FLOWS

CINTI E.;SINESTRARI C.;VALDINOCI E.
2020

Abstract

We consider the volume-preserving geometric evolution of the boundary of a set under fractional mean curvature. We show that smooth convex solutions maintain their fractional curvatures bounded for all times, and the long-time asymptotics approach round spheres. The proofs are based on a priori estimates on the inner and outer radii of the solutions.
2020
CINTI E., SINESTRARI C., VALDINOCI E. (2020). CONVEX SETS EVOLVING BY VOLUME-PRESERVING FRACTIONAL MEAN CURVATURE FLOWS. ANALYSIS & PDE, 13(7), 2149-2171 [10.2140/apde.2020.13.2149].
CINTI E.; SINESTRARI C.; VALDINOCI E.
File in questo prodotto:
File Dimensione Formato  
CSV-FIN-REV2.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 541.21 kB
Formato Adobe PDF
541.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/788349
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact