Realizing active, light-emitting fibers made of conjugated polymers by the electrospinning method is generally challenging. Electrospinning of plasma-treated conjugated polymer solutions is here developed for the production of light-emitting microfibers and nanofibers. Active fibers from conjugated polymer solutions rapidly processed by a cold atmospheric argon plasma are electrospun in an effective way, and they show a smoother surface and bead-less morphology, as well as preserved optical properties in terms of absorption, emission, and photoluminescence quantum yield. In addition, the polarization of emitted light and more notably photon waveguiding along the length of individual fibers are remarkably enhanced by electrospinning plasma-treated solutions. These properties come from a synergetic combination of favorable intermolecular coupling in the solutions, increased order of macromolecules on the nanoscale, and resulting fiber morphology. Such findings make the coupling of the electrospinning method and cold atmospheric plasma processing on conjugated polymer solutions a highly promising and possibly general route to generate light-emitting and conductive micro- and nanostructures for organic photonics and electronics.

Fasano V., Laurita R., Moffa M., Gualandi C., Colombo V., Gherardi M., et al. (2020). Enhanced Electrospinning of Active Organic Fibers by Plasma Treatment on Conjugated Polymer Solutions. ACS APPLIED MATERIALS & INTERFACES, 12(23), 26320-26329 [10.1021/acsami.0c02724].

Enhanced Electrospinning of Active Organic Fibers by Plasma Treatment on Conjugated Polymer Solutions

Laurita R.;Gualandi C.;Colombo V.;Gherardi M.;Focarete M. L.;
2020

Abstract

Realizing active, light-emitting fibers made of conjugated polymers by the electrospinning method is generally challenging. Electrospinning of plasma-treated conjugated polymer solutions is here developed for the production of light-emitting microfibers and nanofibers. Active fibers from conjugated polymer solutions rapidly processed by a cold atmospheric argon plasma are electrospun in an effective way, and they show a smoother surface and bead-less morphology, as well as preserved optical properties in terms of absorption, emission, and photoluminescence quantum yield. In addition, the polarization of emitted light and more notably photon waveguiding along the length of individual fibers are remarkably enhanced by electrospinning plasma-treated solutions. These properties come from a synergetic combination of favorable intermolecular coupling in the solutions, increased order of macromolecules on the nanoscale, and resulting fiber morphology. Such findings make the coupling of the electrospinning method and cold atmospheric plasma processing on conjugated polymer solutions a highly promising and possibly general route to generate light-emitting and conductive micro- and nanostructures for organic photonics and electronics.
2020
Fasano V., Laurita R., Moffa M., Gualandi C., Colombo V., Gherardi M., et al. (2020). Enhanced Electrospinning of Active Organic Fibers by Plasma Treatment on Conjugated Polymer Solutions. ACS APPLIED MATERIALS & INTERFACES, 12(23), 26320-26329 [10.1021/acsami.0c02724].
Fasano V.; Laurita R.; Moffa M.; Gualandi C.; Colombo V.; Gherardi M.; Zussman E.; Vasilyev G.; Persano L.; Camposeo A.; Focarete M.L.; Pisignano D....espandi
File in questo prodotto:
File Dimensione Formato  
2020 ACS Appl Mater Interfaces vol12 p26320−26329.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 9.38 MB
Formato Adobe PDF
9.38 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/786546
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact