Models are developed to grasp the combined effect of rheology and spatial layering on buoyancy-driven dispersion in geologic media. We consider a power-law (PL) or Herschel-Bulkley (HB) constitutive equation for the fluid, and an array of independent layers in a vertical fracture or porous medium subject to the same upstream overpressure. Under these assumptions, analytical solutions are derived in self-similar form (PL) or based on an expansion (HB) for the nose of single-phase gravity currents advancing into the layers ahead of a pressurized body. The position and size of the body and nose and the shape of the latter are significantly influenced by the interplay of model parameters: flow behaviour index, dimensionless yield stress for HB fluids, number of layers and upstream overpressure. It is seen that layering produces (i) a relatively modest increase of the total flow rate with respect to the single layer of equal thickness, and (ii) macro-dispersion at the system scale in addition to local dispersion. The second longitudinal spatial moment of the solute cloud scales with time as for power-law fluids. The macro-dispersion induced by the layering prevails upon local dispersion beyond a threshold time. Theoretical results for the fracture are validated against a set of experiments conducted within a Hele-Shaw cell consisting of six layers. Comparison with experimental results shows that the proposed model is able to capture the propagation of the current and the macro-dispersion due to the velocity difference between layers, typically over-predicting the former and under-predicting the latter.

Dispersion induced by non-Newtonian gravity flow in a layered fracture or formation

Lenci A.;Di Federico V.;
2020

Abstract

Models are developed to grasp the combined effect of rheology and spatial layering on buoyancy-driven dispersion in geologic media. We consider a power-law (PL) or Herschel-Bulkley (HB) constitutive equation for the fluid, and an array of independent layers in a vertical fracture or porous medium subject to the same upstream overpressure. Under these assumptions, analytical solutions are derived in self-similar form (PL) or based on an expansion (HB) for the nose of single-phase gravity currents advancing into the layers ahead of a pressurized body. The position and size of the body and nose and the shape of the latter are significantly influenced by the interplay of model parameters: flow behaviour index, dimensionless yield stress for HB fluids, number of layers and upstream overpressure. It is seen that layering produces (i) a relatively modest increase of the total flow rate with respect to the single layer of equal thickness, and (ii) macro-dispersion at the system scale in addition to local dispersion. The second longitudinal spatial moment of the solute cloud scales with time as for power-law fluids. The macro-dispersion induced by the layering prevails upon local dispersion beyond a threshold time. Theoretical results for the fracture are validated against a set of experiments conducted within a Hele-Shaw cell consisting of six layers. Comparison with experimental results shows that the proposed model is able to capture the propagation of the current and the macro-dispersion due to the velocity difference between layers, typically over-predicting the former and under-predicting the latter.
Chiapponi L.; Petrolo D.; Lenci A.; Di Federico V.; Longo S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/781694
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact