We prove a Markov theorem for tame links in a connected closed orientable 3-manifold $M$ with respect to a plat-like representation. More precisely, given a genus $g$ Heegaard surface $Sigma_g$ for $M$ we represent each link in $M$ as the plat closure of a braid in the surface braid group $B_{g,2n}=pi_1(C_{2n}(Sigma_g))$ and analyze how to translate the equivalence of links in $M$ under ambient isotopy into an algebraic equivalence in $B_{g,2n}$. First, we study the equivalence problem in $Sigma_g imes [0,1]$, and then, to obtain the equivalence in $M$, we investigate how isotopies corresponding to ``sliding'' along meridian discs change the braid representative. At the end we provide explicit constructions for Heegaard genus 1 manifolds, i.e. lens spaces and $S^2 imes S^1$.

Cattabriga, A., Gabrovš, B. (2020). A Markov theorem for generalized plat decomposition. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 20(4), 1273-1294 [10.2422/2036-2145.201804_012].

A Markov theorem for generalized plat decomposition

Cattabriga, Alessia
;
2020

Abstract

We prove a Markov theorem for tame links in a connected closed orientable 3-manifold $M$ with respect to a plat-like representation. More precisely, given a genus $g$ Heegaard surface $Sigma_g$ for $M$ we represent each link in $M$ as the plat closure of a braid in the surface braid group $B_{g,2n}=pi_1(C_{2n}(Sigma_g))$ and analyze how to translate the equivalence of links in $M$ under ambient isotopy into an algebraic equivalence in $B_{g,2n}$. First, we study the equivalence problem in $Sigma_g imes [0,1]$, and then, to obtain the equivalence in $M$, we investigate how isotopies corresponding to ``sliding'' along meridian discs change the braid representative. At the end we provide explicit constructions for Heegaard genus 1 manifolds, i.e. lens spaces and $S^2 imes S^1$.
2020
Cattabriga, A., Gabrovš, B. (2020). A Markov theorem for generalized plat decomposition. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 20(4), 1273-1294 [10.2422/2036-2145.201804_012].
Cattabriga, Alessia; Gabrovš, Bostjan
File in questo prodotto:
File Dimensione Formato  
Markov_theorem_plat_decomposition_revised.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/779921
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact