Focus of this work was the development and characterization of a new immobilized enzyme reactor (IMER) containing human recombinant butyrylcholinesterase (rBChE) for the on-line kinetic characterization of specific, pseudo-irreversible and brain-targeted BChE inhibitors as potential drug candidates for Alzheimer's disease (AD). Specifically, a rBChE-IMER containing 0.99 U of covalently bound target enzyme was purposely developed and inserted into a HPLC system connected to a UV-vis detector. Selected reversible cholinesterase inhibitors, (-)-phenserine and (-)-cymserine analogues, were then kinetically characterized by rBChE-IMER, and by classical in solution assays and their carbamoylation and decarbamoylation constants were determined. The results support the elucidation of the potency, inhibition duration, mode of action and specific structure/activity relations of these agents and allow cross-validation of the two assay techniques
Bartolini M., Greig N.H., Yu Q.S., Andrisano V. (2009). Immobilized butyrylcholinesterase in the characterization of new inhibitors that could ease Alzheimer's disease. JOURNAL OF CHROMATOGRAPHY A, 1216, 2730-2738 [10.1016/j.chroma.2008.09.100].
Immobilized butyrylcholinesterase in the characterization of new inhibitors that could ease Alzheimer's disease.
BARTOLINI, MANUELA;ANDRISANO, VINCENZA
2009
Abstract
Focus of this work was the development and characterization of a new immobilized enzyme reactor (IMER) containing human recombinant butyrylcholinesterase (rBChE) for the on-line kinetic characterization of specific, pseudo-irreversible and brain-targeted BChE inhibitors as potential drug candidates for Alzheimer's disease (AD). Specifically, a rBChE-IMER containing 0.99 U of covalently bound target enzyme was purposely developed and inserted into a HPLC system connected to a UV-vis detector. Selected reversible cholinesterase inhibitors, (-)-phenserine and (-)-cymserine analogues, were then kinetically characterized by rBChE-IMER, and by classical in solution assays and their carbamoylation and decarbamoylation constants were determined. The results support the elucidation of the potency, inhibition duration, mode of action and specific structure/activity relations of these agents and allow cross-validation of the two assay techniquesI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.