Given the pair of vector fields X = ∂x + |z|2my∂t and Y = ∂y −|z|2mx∂t,where (x,y,t) = [InlineMediaObject not available: see fulltext.], we give a condition on a bounded domain [InlineMediaObject not available: see fulltext.] which ensures that Ω is an (ε,δ)-domain for the Carnot-Carathéodory metric. We also analyze the Ahlfors regularity of the natural surface measure induced on ∂Ω by the vector fields.

Monti R., Morbidelli D. (2020). John and Uniform Domains in Generalized Siegel Boundaries. POTENTIAL ANALYSIS, 53(3), 921-945 [10.1007/s11118-019-09792-w].

John and Uniform Domains in Generalized Siegel Boundaries

Morbidelli D.
2020

Abstract

Given the pair of vector fields X = ∂x + |z|2my∂t and Y = ∂y −|z|2mx∂t,where (x,y,t) = [InlineMediaObject not available: see fulltext.], we give a condition on a bounded domain [InlineMediaObject not available: see fulltext.] which ensures that Ω is an (ε,δ)-domain for the Carnot-Carathéodory metric. We also analyze the Ahlfors regularity of the natural surface measure induced on ∂Ω by the vector fields.
2020
Monti R., Morbidelli D. (2020). John and Uniform Domains in Generalized Siegel Boundaries. POTENTIAL ANALYSIS, 53(3), 921-945 [10.1007/s11118-019-09792-w].
Monti R.; Morbidelli D.
File in questo prodotto:
File Dimensione Formato  
John_with_cover.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 354.49 kB
Formato Adobe PDF
354.49 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/776887
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact