Given the pair of vector fields X = ∂x + |z|2my∂t and Y = ∂y −|z|2mx∂t,where (x,y,t) = [InlineMediaObject not available: see fulltext.], we give a condition on a bounded domain [InlineMediaObject not available: see fulltext.] which ensures that Ω is an (ε,δ)-domain for the Carnot-Carathéodory metric. We also analyze the Ahlfors regularity of the natural surface measure induced on ∂Ω by the vector fields.
Monti R., Morbidelli D. (2020). John and Uniform Domains in Generalized Siegel Boundaries. POTENTIAL ANALYSIS, 53(3), 921-945 [10.1007/s11118-019-09792-w].
John and Uniform Domains in Generalized Siegel Boundaries
Morbidelli D.
2020
Abstract
Given the pair of vector fields X = ∂x + |z|2my∂t and Y = ∂y −|z|2mx∂t,where (x,y,t) = [InlineMediaObject not available: see fulltext.], we give a condition on a bounded domain [InlineMediaObject not available: see fulltext.] which ensures that Ω is an (ε,δ)-domain for the Carnot-Carathéodory metric. We also analyze the Ahlfors regularity of the natural surface measure induced on ∂Ω by the vector fields.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
John_with_cover.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
354.49 kB
Formato
Adobe PDF
|
354.49 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.