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John and uniform domains in generalized Siegel
boundaries *

Roberto Monti Daniele Morbidellit

Abstract

Given the pair of vector fields X = 9 + |z|*"yd; and Y = 9, — |z|*"x0;, where
(x,y,t) = (z,t) € R® = C x R, we give a condition on a bounded domain Q C R3
which ensures that Q) is an (g, §)-domain for the Carnot-Carathéodory metric. We
also analyze the Ahlfors regularity of the natural surface measure induced on dQ) by
the vector fields.

1. Introduction

In R3 = C x R we consider the vector fields
X = 9y + |z*"yo; and Y =209, — |z|*"x0,, (1.1)

where (x,y,t) = (z,t) € R® = C x Rand m € [1,+oo[ is a real parameter. The vector
tields X and Y naturally arise as the real and imaginary part of the holomorphic vector

field tangent to the boundary of the generalized Siegel domain {(z1,2z2) € C? : Imz, >
2m+2
17

1 |z
2m+\2/\7e study the interaction of the Carnot-Carathéodory (CC) distance d induced by X
and Y with the geometry of a surface embedded in R3. Namely, we give conditions on
the boundary 9Q) such that an open set O C R? is a John domain, a uniform domain
and such that the natural surface measure induced on 0Q2 by X and Y is Ahlfors regular,
see Definition [[.4

John domains are also known as domains with the twisted cone property, see Defi-
nition When the distance is induced by Hormander vector fields in R", several au-
thors proved that a bounded John domain supports a global Sobolev-Poincaré inequality,
see [Jer86}SC92,[FLW96, GN96] and the discussion for a general metric space in [HKO00].
The exterior twisted cone property is also relevant in classical potential theory because it
implies the subelliptic Wiener criterion (see [NS87]).

Uniform domains are also known as (¢,J)-domains, see Definition They form
a subset of John domains. In the global theory of Sobolev spaces for Hormander vec-
tor fields, Garofalo and Nhieu proved in [GN98|] that subelliptic Sobolev functions in a
uniform domain can be extended to the whole space. In [DGNO6] it is also shown that
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the trace of a Sobolev function in a uniform domain with Ahlfors regular boundary be-
longs to a suitable Besov space of the boundary. Also for this reason, we shall study
the Ahlfors property very carefully. The trace problem was analyzed in [MMO02] in the
non-characteristic case and in a two-dimensional model. In [GMM], we study by a di-
rect approach the trace problem at the boundary of the characteristic half plane ¢t > 0 for
vector fields of Martinet type X = dy, Y = 9, + |x|*0; in R3.

In spite of the previous results, there are not many examples of John and uniform do-
mains in Carnot-Carathéodory spaces. In fact, the subRiemannian case is more delicate
than the Euclidean one because of the presence of characteristic points, i.e., points where
the Hormander vector fields are all tangent to the boundary. Such points make the con-
struction of the inner cone more difficult. Sometimes the inner cone does not exist at all,
even for analytic boundaries, see e.g. [MMO5b, Theorem 1.2].

A well known general fact is that small CC-balls are John domains. We also mention
some contributions by the russian school. See [V(G95|G14,G18|], where the authors study
the uniformity of subRiemannian balls in Heisenberg groups. See also [G01] and [RO5],
for further examples. In [MMO5b] it is proved that C> domains in Carnot groups of step
two are uniform. The case of cylindrically symmetric domains was already considered
in [CGYY|| in the Heisenberg group, that is the model with m = 0. In [MMO04] and
[MMO5a], the authors studied the case of diagonal vector fields.

In this paper, we study uniform domains in R® for the CC distance of the vector
fields (1.1I). Our sufficient condition for a domain to be uniform requires the boundary to
be “flat” near characteristic points on the t-axis.

Let Q C RR® be an open set with C* boundary. If both X and Y are tangent to 9Q) at
the point p € d(), then there is a neighborhood U, of p such that U, N dQ) is a graph of
the form t = ¢(z). So we start from the following definition.

Let A C IR? be an open set and ¢ € C®(A). We say that . = gr(¢) = {(z,¢(z)) €
R3 : z € A} is an m-admissible graph if there exists a constant C > 0 such that forallz € A

ID%p(z)| < Clz""7",  |D?(2)| <Clz|*" and  |De(z)| < Clz[*"*. (1.2)
When 0 ¢ A, the three conditions (1.2)) are trivially satisfied in a compact subset of A.
The conditions are instead restrictive when 0 € A. In (1.2) we adopted the notation

k
|DX(z)| := max;,,.;, |ax-a-% (z)| to denote the largest k-th order derivative of ¢.
it Tk

Definition 1.1. Let m € [1,+o0[. We say that a bounded domain Q) C R® with smooth
boundary is m-admissible if for any characteristic point p € d() there exists a neighbor-
hood U, of p in R? such that 90 N U, is an m-admissible graph.

It is easy to construct simple examples of admissible sets. Consider for instance the
bounded domain
O ={(z,t) e R®: |22 4 2 =1}, (1.3)

The boundary 9oQ) has two characteristic points, namely (0,0, —1) and (0,0,1), and the

functions ¢(z) = +4/1— |z]2"+1) satisfy condition ([:2). Small perturbations of the
boundary, compactly supported outside the characteristic set, give nonradial examples.
Our main result is the following:
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Theorem 1.2. Let m € IN. Any m-admissible domain Q C R® is uniform and, in particular, is
a John domain in (R3,d).

In fact, our proof shows that admissible domains are also non-tangentially accessible
(NTA). Concerning our requirements on the rate of growth for the function g, it is
easy to check that any open set which agrees in a neighborhood of the origin with the
epigraph {t > |z|*} with & < 2m + 2 is not a John domain.

On the other hand, let us consider the epigraph {t > —x?"*1y} of Example All
the points (x,0,0) of the x-axis are characteristic points of the boundary. However, the
“order of degeneration” of such points is 2 when x # 0, while it is 2m + 2 when x = 0.
The difficulty of our work in Section [f] is due to the fact that we need to construct a
family of inner cones of constant aperture contained in {t > —x?"*1y} and with vertex
at points arbitrarily close to the characteristic set. Furthermore, in order to prove the
(¢,6)-property, in Section [f] we also need to show that cones with close vertices have
quantitatively close axes.

Theorem [I.2] is proved in Sections [5} [ and [] We first show that global (i.e., with
A = R?) admissible graphs have the global cone property and then that they satisfy the
(¢,0)-condition. Finally, we deal with the case of bounded domains. The proofs rely on
a precise description of the distance d, which will be discussed in Section 2} and on some
preliminary results proved in Section

The natural surface area on d() is the perimeter measure of () induced by the vector
fields (L.I). This is the measure

= \/(N, X)2+ (N, Y)2 H2L2Q, (1.4)

where N is the unit Euclidean normal to 0Q), (-, -) is the standard scalar product of R3,
and H2L 9Q) is the standard surface measure, i.e., the restriction of the 2-dimensional
Hausdorff measure to d(). This is a special case of the variational definition of perimeter
measure in CC-spaces, see [GN98] and [MSCO01]. For admissible domains, the measure y
is codimension 1 Ahlfors regular in the following sense.

Theorem 1.3. Let m € IN and denote by B(p,r) the CC-balls. For any m-admissible domain
Q C R3 there exist constants C > 0 and rg > 0 such that forall p € 9Q and 0 < r < rg

1 BN < y(p,ry) < PP (15)
Above, | - | denotes the Lebesgue measure in IR®. This theorem is proved in Section
and relies on the delicate analysis of global admissible graphs tackled in Section @ Our
analysis will require the study of several situations, depending on how CC-balls intersect
the graph near the characteristic set.
The ball-box theorem for the distance d is proved in the first part of the paper. For
any (z,t),({,7) € R3, we define the function

5((20,€ ) = 2= ¢l +min { o=, FLEL 16)
where v = T — t + |z|*"w(z,{), and w(z,{) = xn — y& with z = (x,y) and { = (¢, 7).

3
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Theorem 1.4. Let m € [1,4oo[. There is a constant C > 1 such that for all p = (z,t),9 =
(C,7) R’
C'o(p,q) < d(p,q9) < Co(p,q). (17)

This theorem is proved in Section 2] Our proof is completely self-contained and works
for any m > 1, also noninteger. Note that when m € [1, +oo[\IN, the well known ball-box
theorem in [NSW85] cannot be applied, because the vector fields are not smooth at
z = 0. Inthe case m € IN, a local version of Theorem[I.4]can be obtained from the classical
results in [NSW85]. The statement can in principle be globalized by some dilation argu-
ment, but this requires some care. Here, we give an independent self-contained proof of
Theorem[I.4} In particular, Step 2 and Step 3 of the proof of this theorem give a construc-
tive and quantitative explanation of the fact that any pair of points can be connected with
a horizontal path.

2. Ball-box estimate

In this section, we prove Theorem and, in Corollary below, we rephrase it as a
ball-box estimate.

An absolutely continuous curve 7 : [0,1] — R3 is horizontal for the vector fields (I.1),
if it satisfies 7 = a(s)X(7y) + B(s)Y(7y) for a.e. s € [0,1]. The length of -y is defined as

length(y / |(a ))|ds.

Given points (z,t), (¢, 7) € R3, the CC distance d((z,t), ({, 7)) is defined as the infimum
(the minimum, in fact) of the length of all absolutely continuous curves 7 : [0,1] — R?
connecting them.

We will use the following invariance properties of d. For all (z,t),({,7) € C xR,
s,0 € R,and r > 0 we have:

d((z,1), (¢, 7)) = d(e’z, 1), (¢, 7)); (2.1)
d((z,1),(g, 7)) = d((z t +5), (0, T +5)); (2.2)
d((rz, 7" 2t), (r{, v 21)) = rd((2,t), (L, 7)) (2.3)

We will also use the following elementary estimate, holding for any x,y € Rand m > 1:

Co (™ 1™ [lxl = lyl] < [Ix]™ = [yI™] < Cu(Jx|" 7" + [yI"Dly —x|.  (24)

Proof of Theorem[1.4]. Step 1. We claim that there exists a constant C > 0, depending on m,
such that 8((zo, ty), (¢, 7)) < Cd((zo, to), (¢, 7)) for all points (zo, ), ({,T) € R>.

By (2.1)-(2.2), we can assume that zgp = (x0,0) with xo > 0 and tp = 0. In this case,
we have w(zo,{) = xon, with { = (&, 1), and the definition in for § reads, with
v="T+ x2m+117,

ol

3((20,0), (¢, 7)) = |Zo—C|+min{ e

‘U’ZmlJrZ}
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Lety = (z,t) : [0,T] — R3, T > 0, be a unit-speed horizontal curve connecting (zo, 0)
and (g, 7). Welet z = z(s) = (x(s),y(s)) = (x,y). From the unit-speed condition |z| < 1,
we deduce that

|zo—§|:‘/0T7Lds’ <T. 2.5)

We estimate the quantity
T
v="T+ "y = /0 {|z|2’”y5c + (gt — |z\2”‘x)y'}ds‘
We claim that there exists a constant C > 0 such that for all s € [0, T| we have

2Pyl + " = |z < C(ag™s + 2. (2.6)

The left-hand side is evaluated at s € [0, T]. From |z| < xp + s and |y| < s we deduce that
|z|?M]y| < C(x3™s + s2"+1). By the triangle inequality and (2.4), we have

g™t = [z x| < |12 — 2™ |x| + 25" — xo]

< Cn(|2P" 1 4 25" 1) 2] = xo[x] + 25" x — x0.
Using |x| < |z| < x0+s5, ||z] — x0| < s and |x — xo| < 5 we obtain [xJ" ! — [z|?"x| <
C(x(z)"’s + s2M+1)_ This finishes the proof of (2.6).
Now, implies that |7 + x5 1y| < C(x3"T? 4 T?"*2), which is equivalent to

{ ’T + x5m+1’7’1/2

m
X0

T > C ' min ,|r+x3m+1q|zn3ﬁ}. 2.7)

The inequalities and imply 6((20,0), (¢, 7)) < CT and minimizing on T we get
the claim made in the Step 1.

Step 2. We claim that there exists a constant C > 0 such thatd((z,t), (z,7)) < Cé((z,t),(z,T))
forallze Candt, T € R,ie,

|T — t\l/z}

d((z,1), (z,7)) < Cmin { T — #77, R

(2.8)
By (2.1)-(2.2), we can without loss of generality assume that z = (x,0) withx > 0,t =0
and T > 0.

For each u > 0 consider the unit-speed path [0,4u] 5 s — {(s) € R? that linearly
connects the points in the plane (x,0), (x,u), (x +u,u), (x +u,0) and (x,0). Let R, be
the square enclosed by (. The path ¢ has length 4u and its unique absolutely continuous
horizontal lift s — y(s) = ({(s), T(s)) satisfying 7(0) = 0 has final point

w(u) = [Jg[" (rdg —gd) =20m+1) [ 10P"d5dn > C A ). (@9)

We used Stokes’ theorem with the counterclockwise orientation of {. The function u —
Jr, 1€ >"ddy is a strictly increasing bijection of [0, +co[ onto itself.
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Let i be the unique number such that 7(4#%) = 7. By the definition of the distance d
and by (2.9), we have

d((x,0,0),(x,0,7)) < 4% = min {4u > 0: t(4u) > 7}

< min{4u >0:7 < Cy ' (x¥" +u?™)}
1/2
T
< Cmin{—,ﬂm]ﬁ}.
xm

This concludes the proof of the Step 2.

Step 3. We claim that the inequality d((z,t), ({, 7)) < Cé((z,t), (¢, T)) holds for all points
(z,t),(¢,T) e C xR.

We preliminarily observe that, given (1,v) = w € C, for any point (z,t) = (x,y,t) we
have

1
e XY (z,4) = (z +w, t+ w(w,z) / 1z + sw[z’”ds),
0

where w(w, z) = uy — vx and e*X+9Y(z, t) denotes the value at time 1 of the integral curve
of uX + vY starting from (z, t) at time 0.
By the triangle inequality, it follows that

d((z,t),(¢,7)) <d((z,t),eE XY (7 1)) 4 4 (eC-OXHU=VY (2, 1), (,7)).

In the last distance, the points are one above each other and so, by , we get
. 1 1
d((z, ), (7)) < c(|z —7 +mm{yt — T AT, |- T+Ayz/|z;|m}), (2.10)

where )
A=w(z) /0 |z 4 5(¢ — z)[*"ds.

We used w({ —z,z) = w({, z).

In order to prove the claim in the Step 3, we have to show that the right-hand side in
(2.10) is less than Cé((z, t), (¢, T)). By 2.1)-(2.2), it is enough to prove this estimate in the
case z = (x,0) with x > 0 and t = 0. In this case, the distance § is

1/2
5((z,0),(¢, 1)) = |z— | + min {\valﬂ, ‘Uglm }, V= T+x2m+117.

We distinguish two cases:
Case G1: |v|ﬁ+2 < |o|z/x™M, ie., x < |v|ﬁ+2;

Case G2: ]v[ﬁﬂ > |o]2/x™, e, x > |v|ﬁ

Case G1. When z = (x,0) and t = 0 we have w({,z) = —x# and, see (2.10),

1
t=T+2] = [t [z +s(C—2) s
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We claim that in the Case G1 we have

T+x17/ 1z 45(¢ — z)[*"ds

e < C(]g—z\ + ‘v‘2m+2> (2.11)
This and - finish the proof of the the Step 3 in the Case G1, because the right-hand

side in ( is Cé(( 0),(Z,1)).
We prove (2.17). By the triangle inequality, we have

T+x17/ 1z +5s(C |2mds’ < |v|+x|17]‘ 2’”—1—/ 1z +5(C )|2mdS’
—fol+ =yl [ [ i+ e~ 2)Pde

= lo| + 2mx gl [ /|z+e 2P 2{(2,5 ~ 2) + ol¢ — 2 }dads|
< C(lv[ +0),

(2.12)

where we let
© = x|y (x +1¢ — 2" 2 (x|¢ — x| + | — ). (2.13)
By the Holder inequality and by the Case G1 we have

® < Cx|¢ —z[(x + g —z|)*™ < C(x + |¢ — z[)?" 2 < C(|v| + | — z|*"+2).

This and (2.12) finish the proof of (2.11).

Case G2. In this case we have x > |v| 772, and thus

il
5200, 7)) = 2=+ G, o =Ty,

We distinguish the following three subcases:
1
& -l <5x (G2a)
1
max{[g], Iy} < 1x; (G2b)
1 1
max{|¢|, |y|} > Ex and | —x|> > % (G2c¢)
In the Case G2a, the quantity © in ( can be estimated as follows
® < Cxly|(x + |n)*" 2 (x]x — | + )
and from x < x + |7] < C|{| we deduce that

i (01+©) < C(J5h el = g47)) < ok +10-2P).

[ (x + 7]

This along with (2.12)) and (2.10) finish the proof of the Step 3 in the Case G2a.

7
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In the Case G2b, the quantities x, x + |{|, x + ||, | — x| are mutually comparable
with absolute constants and therefore, also using the Holder inequality, the quantity © in
(2.13) can be estimated as follows

0 < Cx2m+l|;7| < C|C—Z|2m+2.

On the other hand, we have

ol o

|U|2m+2 < C(x —+

o) <c(ig-=+ 250,

These two inequalities imply, via (2.12), that the claim (2.11) holds also in the Case G2b.
In the Case G2¢, we have x < C|{| and from (2.13) we estimate

® < ClZlnl(Ig] +1g = zD)*"2(11Ig =zl +1& — z[*) < CIZI*"|g — 2P,

and we conclude that

[o]'/2

mm(®+!v|)”2<C(|C 2|+ 50 )-

The proof is concluded also in this case. O

Remark 2.1. The argument of the proof of Theorem shows in fact the global equiva-
lence

[(u,0)| < d((z,1),e"XT%Y (z,t)) < Co|(u,0)|, u,0,t €R, z€R%. (2.14)

Next we describe the d-balls as suitable boxes. For any > 0 we define the weighted
norm of u = (uq,us,u3) € R?

l1tll1,1,5 = max{|ual, [ual, [us]'F},

and for any p = (z,t) = (x,y,t) € R3and r > 0 we define the boxes

Box;(p,r) = {(x +uy,y +uy, t+ ]z\zm(ug +yug — xuz)) : ||u||1,1,2 < r},
Box;(p,r) = {(x g,y + g, t+ s+ 2] (yur — xu2)) ¢ |l e < r}.

Corollary 2.2. Let m € [1,4oo[. For any a > 0 there exist constants by, by, &y > 0 such that for
all p = (z,t) € R3 and r > 0 we have:
(i) if |z| > ar, then

Box;(p,dor) C B(p,r) C Box((p, b1r); (2.15)
(ii) if r > a|z|, then

Box;(p, dor) C B(p,r) C Boxj(p, bar). (2.16)



R. Monti and D. Morbidelli, John and uniform domains - [Thursday 4% March, 2021]

Proof. Step 1. We claim that for a suitable ép > 0 we have
Box; (p, dor) UBox;(p, dor) C B(p,r) C Boxi(p,r/80) UBox;(p, /).

To prove these inclusions, we observe that, letting v = T — t + |z|?" (xn — y¢),

0|1/2
(,7) € Boxi(p,r) < max {|§— x|, |1 —yl, ||z‘|m } <r, (2.17)
(¢,T) € Boxj(p,r) << max {\C —x|,|n—vyl, \v\zmlﬂ} <. (2.18)

Thus the point (g, T) belongs to the union of the boxes if and only if | — x| <1, [y —y| < r

and .
min \v[ﬂr}ﬁ [ol> <r
" z|™ '

Now the claim follows from Theorem We also proved both the inclusions in the
left-hand side of (2.15) and (2.16).

Step 2. We prove the inclusion in the right-hand side of (2.15). Let |z|] > ar and let
(¢,T) € B(p,r). By the Step 1 we know that ({, ) € (B;UBy)(p, /). Then, we are left
to show that

o[/

Bl

|z| > ar and min{\v\mlﬁ, } <r/b =

If the minimum is [v]'/2/|z|™, there is nothing to prove. Otherwise we have |v|!/(2"+2) <
r/d0, ie., [0|'/? < (r/80)"*1. This and |z| > ar imply

]U|1/2 - |Z)|1/2 - (1’/50)'”+1 _ 1 .
2" = (arym = () T gyt

Step 3. We prove the inclusion (2.16). Arguing as in the Step 2, it suffices to prove that

1/2
r>walz| and min{|v|ﬁ, [o } <l = |v|ﬁ < byr.
2™ do

If the minimum is || %2, there is nothing to prove. Otherwise we have

1/2
Ly PEE s opra(8)”,
50 ‘Z|m r

that is equivalent to |o|1/2 < r"*1/8ya™. This is the claim. O

3. Geometry of admissible graphs

Let ¢ € C®(IR?) be a smooth function satisfying the flatness conditions at any point
z € R% A defining function for the graph of ¢ is the function F € C*(RR®) given by
F(z,t) = ¢(z) — t. The derivatives

XF(z,t) = XF(z) = gx(2) — |2|*"y,

YF(z,t) = YF(z) = ¢y (2) + |z[*"x
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do not depend on f and we let ZF(z) = (XF(z),YF(z)). A point (z, ¢(z)) € X = gr(¢) is
characteristic if and only if ZF(z) = 0. By (1.2), the function ZF satisfies

|ZF(z)| < C|z]*"™1, zeR% (3.1)

Example 3.1. Let m € IN. The graph of the function ¢(z) = —x?"*!

each point of the x-axis is characteristic.

y is m-admissible and

The next proposition describes the restriction of the distance d to an admissible graph.

Lemma 3.2. Let ¢ € C*(IR?) satisfy the conditions (I.2). Then there exist a constant Cy > 0
such that forall p = (z,¢(z)),q = ({, ¢(0)) €

NI—=

Cod(p,a) < 1¢ —z!+\"’y“’(z) +w(z0)|" < Codlpa), (62

z,g

where y,; = max{|z|, |{|} and w(z,{) = xn — y.

Proof. Without loss of generality, we prove the lemma in the case |z| > |{|. We claim that,
letting v = ¢(0) — ¢(z) + |z|*"w(z,{), we have

o[/

|z[™

< C(|g - z| + |[v|72) (3.3)

Taking for granted and starting from Theorem [1.4] by it follows that

‘ L o2 o[1/2
d(p,q) ~|C —z| —}—mm{\v[wz + ||J|m } |0 —z| + ’| ||

and this is (3.2).
We prove (3.3). From the elementary inequality a'/2b!/? < C (u% b + b)fora,b >
0, we obtain

|o[!/2 ¢(0) —9(z)  w(z,0) /2
|Z’ _’ ‘1/2‘ ’Z‘2m+l + |Z’ ‘
w1 @(0) — @(2) | w(z,0) w1 9Q) —9(z) | w(z])
< {!z\ m BEGa + 2] +‘ FEGE + z ‘}
o 9@ — (@) | lw(z D)
< c{jo]=n + St }

<c{p== +z2-¢l},
because by and || < |z| we have
9(2) = (2)] < C(|2]*" 1 + [T )]0 — 2] < Clz* g — 2],

and, moreover, |w(z, ()| = |w(z,{ —z)| < |z]|C — z|. O

In the next propositions, we discuss other consequences of the conditions (1.2).

10
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Proposition 3.3. Let ¢ € C®(R?) satisfy (T.2). Forall z,{ € R? we have
¢(0) — ¢(z) + pfiw(z,0) = (ZF(2),§ — z) + p270(I¢ — zP), (34)

where p,; = max{|z|, |{|} and the remainder satisfies |O(|{ — z|?)| < Cl|z — {|* for a constant
C>0.

Proof. Expanding ¢ at the second order at a point z € R?, we obtain for any ¢ € R?
9(0) = 9(2) + 2" w(z,0) = (ZF(2),{ — ) + 27 O(I — z*). (3.5)

By (T.2), the remainder satisfies the uniform estimate |O(|¢ — z|?)| < C|Z — z|? for all
z,{ € C. If y,; = |z|, this is our claim (3.4).
If |z| < |{], starting from (3.5) it suffices to use the estimates |w(z, {)| < |{]|¢ — z| and

122" = |2 < Cugi g — 2| < CIZP" g — 2.
and the proof is concluded. O

Next we get a Taylor expansion of ZF({) with a remainder O(|{ — z|?). This is the
only point where we use the assumption |D3¢(z)| < C|z|?>"~L.

Let z,{ € R? be points with |{| < 2|z|. There exist points z/ = z/(z,{) and z” =
z"’(z,{) in the line segment [z, {] such that:

9x(0) = 9x(2) +(Dgx(2'), L — z) + 2" 71O(Ig — z]),
¢y(0) = 9y(2) + (Dgy("),C — z) + [z]*"1O(Ig — z).

On the other hand, we have

(3.6)

C12"y = 121"y + |22 (2mxy, |2 + 2my?), § — z) + [z[*"71O(C - zP?),
1C1P"E = |2*"x + [z 72 (([2]? + 2ma?, 2may), § — 2) + 2" 71O(IC — 2/?).

With these estimates, we have proved the following:

Proposition 3.4. Let ¢ € C®(R?) satisfy (1.2). For any z,{ € R? with |{| < 2|z| we have
ZF(g) = ZF(z) + M(z,0)(C — 2) + [z*"71O(|C — z*)

XF

where ZF = [YF

}g—z: [g:ﬂ and M = M(z, Q) is the 2 X 2 matrix

Px(2) — 2m|z[2" " 2xy Py (2') — |27 72 (|2]” + 2my?)

M= [(ny(Z”) + |22 (|z|? + 2mx?) Py (2") + 2m|z|P"2xy

(3.7)

If ¢ = 0, then det M = (1 + 2m)|z|*". In this case, the matrix M is nonsingular for all
z # 0. Example 3.1/ shows that, for some admissible functions, nonsingularity may fail
also at points z # 0. However, we are able to show that the matrix M(z, () has always
rank at least one and that it satisfies the following quantitative nondegeneration property.
This property is needed to get an Ahlfors lower bound in the noncharacteristic case, the
Case 1c in next section.

11
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Proposition 3.5. Let ¢ € C®(R?) satisfy (T.2). There exist constants C; > 1, g9,€2 € 0,1]
such that for all z # 0 there is a unit vector u € S* C IR? such that for all r € )0, 0|z |[ we have

|M(z2,2)(C —z)| = Cy [z (3.8)
forall { € Beuc(z + 5u,€r) C Bpuc(z,7) C R%
Proof. Denote by ey, e2 the coordinate versors of R2. Then, letting M = M(z, (), we have

| Mex| + |Mes| >

Pry(2") + 122772 (|2 + 2ma?) | +
> (2m +2)‘Z’2m - ‘(ny(z/> - Goxy(ZH)‘-

From (1.2) and |z’ — 2z"| < | —z| < €9|z|, we deduce that, if ¢ is conveniently small, then
we have the inequality |@x,(z') — @xy(2”)| < |z|*". This implies that [Me;| + |Me,| >
2m|z|2m. Thus, given z # 0, at least one of the choices u = e; or u = e, ensures that
|M(z,{)u| > |z|*™ for all  such that | — z| < ¢|z|. Therefore, for any v with |v| < 1 and
gy > 0 we have

[M(2,0) (1 + €20)| = [z — e2| M(z,0)| > |z" — e2Clz|*"

Py (2) — |22 (|2 + 2my?)

where |[M(z, ()| denotes the operatorial norm, which under our assumptions satisfies
|M(z,{)| < C|z|*™. Thus, taking &, small enough we get a lower estimate with 1 |z|2".
The claim follows by multiplying the last inequality by r/2. O

4. Ahlfors property for entire admissible graphs

In this section we prove Theorem [1.3|in the case when the boundary of the domain is an
entire admissible graph. The case of a bounded domain is in Section[7] A discussion of
the problem in a translation invariant setting of step two is contained in [CGO06].

Let 7t : R® — R? be the projection 71(z,t) = z and denote by X the graph of a function
@ € C®(IR?) satisfying (I.2). By the area formula, the measure u defined in (T.4) satisfies,
forany p € Xandr >0,

u(B(p,r)NZ) = : |ZF(Z)|dgdy. (4.1)

/n(B(p,r)ﬂZ

The integration domain can be estimated using Lemma Foranyz € R?and r > 0 we
define the “disks”

D(zr) ={{ e R*: [{ =2 <1, |9(0) — ¢(2) + pgzw(z ) < pgir’},  (42)
where y;, = max{|z|, |{|}. By Lemma 3.2} there exists a constant Cy > 0 such that
D(z,r/Co) C m(B(p,r)NX) C D(z,Cor), forallz € Candr € |0, +o0]. (4.3)

The Lebesgue measure of the ball B(p,7), p = (z,t) € R3, can be computed using

Corollary Let g9 € ]0,1[ be the constant given by Proposition 3.5, From 2.15)-(2.17)
and (2.16)—(2.18), using Fubini-Tonelli Theorem we obtain

IB(p,r)| = |z[*"r*, if r<eolz],
[B(p,r)| = 7", if > gglzl.

The equivalence constants depend on the parameter .

12
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4.1. Proof in the Case 1: r < gg|z|.

We claim that for any point p = (z, ¢(z)) € X and r > 0 such that r < gy|z| we have:

u(B(p,r) ML) = |z|*". (4.4)

Observe that in Case 1 we have the obvious equivalence 1|z| < |¢| < 3|z|. Let p > Obea
parameter that will be fixed after (4.10). We distinguish two subcases:

Case 1c: |z|*"r > B|ZF(z)|. This is the characteristic case.

Case 1nc: |z|*"r < B|ZF(z)|. This is the non-characteristic case.

In the Case 1c, points are in a quantitative way near the characteristic set of X, where
|ZF(z)| = 0.

Case 1c — upper bound. We start from the elementary inclusion w(B(p,r) NX) C {{ €
R? : | — z| < r}. Thus, using the expansion (3.4) and the trivial estimate |[M({ — z)| <
C|z|*"|{ — z| we obtain

/|5z|5r|ZF@)|d€d'7 N /|Cz|§r ‘ZF(Z) +M(E —z) + [z O(Ig — 2P) ‘dgd'?

1 m m m—
< (GlelmrClaPic — |+ ClzP" g — =P )agdy

< c( +c)\z12m r

p

We also used r < gglz| to estimate the third term.

Case 1c — lower bound. We claim that there exist constants ¢; > 0 and B > 0 such that
{CeR*: |7 —z| <e1r/Co} C m(B(p,r)NL). (4.5)

The constant Cj is the one given by Lemma
In view of the expansion (3.4), the set D(z,r/Cp) introduced in (4.2) satisfies

D(z,1/Co) = {{ € R*: [ — 2| <1/Co, (ZF(2),{ —z) + p2fO(IC — z*)| < C 2pzr®},

where, for some absolute constant C1, we have |O(|{ — z|?)| < C1|¢ —z|> < C1Cy %212,
provided that |{ — z| < &17/Cy. If €1 satisfies

Ce <o, (4.6)
2
then we have the inclusion
{CeR*: |0 —z| <er/Co, |(ZF(z),{ —2)| < C0 212r*} € D(z,7/Co). (4.7)

By the Case 1c, we have

1 1
(ZF(2),f —2)| < Blzlszlé—zl =< Bﬁlco .
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Thus, if ¢; and B are such that
€1 Cal
B
the inclusion holds, as we claimed.
Next we use Propositionto estimate |ZF({)| from below at all points { € Bgyc(z +
ou/2, szg), where 0 = lealr and u € S! is such that holds. Namely, we have

<

Cy2
T/ (4‘8)

IM(C —2)| = G [z Gy ',
where M = M(z, () is the matrix (3.7). For such a point { we have

|ZE(Q)| = |ZF(z) + M({ — z) + 2" 1O(IC — =)
> Cy ' |z["erCy ' r — |ZF(2)] — 2" 1O — 2I?)

1
> Gtz Gyl — B|Z|zm7’ — Cy|z|" tedr? (4.9)
1 1
> G J2P"er Gy — el = Gila ey 2 55y,
provided that
1 1 1
B S 1C2_181C0_1 and Clg% S 1C2_181C0_1~ (410)

We may choose €1 > 0 such that the inequalities in the right-hand side of (4.10) and in
both hold. Then we fix B > 0 such that the inequalities in the left-hand side of (4.10)
and in both hold.

By and @.9), we finally obtain
/ 1ZE(Q)|d2dy > G5 |z,
7(B(p,r)NE)

where, after fixing €1 and B, the constant Cs is absolute.

Case 1nc — upper bound. In order to evaluate from above the integral in (4.1)), we start from
the estimates |M({ — z)| < C|z|*"|{ — z| < C|z|*"r < CB|ZF(z)|, where C is an absolute
constant. Here we used the fact that |{ — z| < r for all points { in the integration set.
Therefore, the weight in the integral satisfies

|ZE(Q)] = |ZF(2) + M(C = 2) + [2]*"7'O(IC — 2I*)| < C(1 + B)|ZF(2)]. (4.11)

In order to get the required estimate, the obvious inclusion 77(B(p,r) N %) C Bgya(x,7)
does not suffice. We need the stronger condition (3.2), which tells that for some abso-
lute constant Cy > 0 we have 7m(B(p,r) NX) C D(z,Cor). Using the definition (4.2)
of D(z, Cyr), the expansion (3.4) and also using |z| ~ ||, that follows from Case 1, we
discover that

ZF(z) |z |2
‘<|ZF(z)"€_Z>‘ = Cmrz, forall € D(z, Cor).
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ZF(z)
|ZF(z)]

r2. Therefore the Lebesgue measure of 7w(B(p,r) N X) satisfies the inequalities

This tells that the projection of the set D(z, Cyr) along the unit direction has size

‘Z‘Zm

|ZF(2)]

|Z|2m

|(B(p,r)NX)| < |D(z,Cor)| < C

3
< Crm (4.12)

for an absolute constant C > 0. Ultimately, from (4.11) and (4.12), we obtain the upper-
bound:

pBpND) = [ IZEQ)lgd < 1 )P

Case 1nc — lower bound. Observe first that (4.7) holds also in this case. Then, under our
choice of £; and 8, we have

[0eR: |0~z < 1Cy'r and [(ZF(2),{ 2| < %ygjgc(;zrz} c n(B(p,r) N T).
Let e3 < €1 be a small positive constant to be fixed below. Then we have
{CeR: |0~z < exCy'r and [(ZF(2),¢ — 2)| < 2"} € m(B(p,r) NT),

The set in the left-hand side has size | Z|ZF|Z)‘7’2 along the unit direction ZF(z)/|ZF(z)|.

Then we have the estimate from below for the Lebesgue measure of the integration set.

17(B(p,r)NZ)| > C [z (4.13)
S Ol) |
To conclude the proof, we get a lower estimate for the function in the integral.
|ZF()| = |ZF(z) + M(Z — 2) + [2]P"71O(I0 — z*)| > |ZF(2)| = Calz*"[Z — 2]
> |ZF(z)| — Calz[esCy ' (4.14)

_ 1
> |ZF(z)| - CagsCy 'B|ZF(2)| = 5| ZF(2)],

provided that €3 is so small that CyBe3C; 1< % The lower bound follows from (4.13))

and (@.14). This ends the proof of (4.4).

4.2. Proof in the Case 2: r > ¢|z|.

We claim that for any point p = (z, ¢(z)) € £ and r > 0 such that r > g|z| we have:
u(B(p,r)NL) =~ r¥mt3, (4.15)

We can without loss of generality assume that ¢(0) = 0. By Lemma(3.2/and |¢(z)| <
C|z|*"*+2, there exists a constant Cs > 1 such that

Cs'|z| <d((0,0), (z, ¢(2))) < Cslz. (4.16)
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Case 2 — upper bound. For z € R? and r > €o|z|, we have the inclusions
B((z, ¢(2)),r) C B((0,0),Cs|z| +7) C B((0,0), (g " + Cs)r).

Thus, we obtain
ZF(Q)|dedy < / Iz dgdy < Crams,
/N(B(P,r)ﬁi)‘ (©)ldedy |Z]<Cr <l 1

To check the lower bound, we distinguish two cases.

Case 2a: go|z| < r < 2Cs|z|. It suffices to start from inclusion B((z, ¢(z)),r) D B((z, ¢(z)), €0|z]).
Then the perimeter measure of the smaller ball can be estimated as in Case 1. To conclude
observe that |z| >~ 7.

Case 2b: 2Cs|z| < r < co. In such case we have
B(0,7/(2C3)) N C B(p,r) N L. (4.17)
Indeed, for any g = (¢, ¢(Z)) € B(0,7/(2C2)) we have |{| < r/(2Cs) and
d(p,q) < d(0,p) +d(0,q) < Cslz| +Cs[¢| <,

as claimed.

By (@.17), it is enough to prove the lower-bound estimate in the case z = 0. For ¢ > 0,
we calculate by Stokes’ theorem the following integral on the curve 7,(s) = ge™", with
s € [0,2m],

/

(XFdE + YFdy) = /§|<Q

— @+2m) [ [gPrdcdy = T,
I¢l<e

(=24 0c0(@) = 1E"y) +0:(2,9(2) + 5 *"2) ) decty

Q

that implies flé\:Q |ZF(2)|dH'({) > C1¢*"*2. Thus we get the estimate

dédn = ' d 1 d -1 2m+3.
J, \zE@aean = [ [ |ZF@)laH @)de = C

This inequality ends the proof of (4.15) and thus of Theorem [1.3|in the case of entire
admissible graphs.

5. Cone property for admissible entire epigraphs

We recall the definition of a John domain, specialized to the metric space (R, d).

Definition 5.1. A bounded open set () C R3 is a A-John domain, with A > 0, if there
exists a point pg € Q such that for all p € Q) there is a continuous curve y : [0,1] — Q
such that v(0) = p, v(1) = po, and

B(7y(t),Adiam(v]py)) C Q forallt €]0,1]. (5.1)

A curve 7y satisfying (5.1) is called a John curve in () with parameter A > 0.
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In our definition, the curve 7 is not required to be rectifiable. By the results of [MS79],
Definition 5.1]is equivalent to the more standard one with rectifiable curves and with
diameters replaced by lengths. John domains are also known as domains with the twisted
interior cone property.

In this section, we consider an unbounded domain of the epigraph type Q) = epi(¢) =
{(z,t) € R®:t > @(z)}, where ¢ € C*(IR?) is an m-admissible function, and we con-
struct a nontrivial John curve starting from any point p = (z,t) € Q. The case of a
bounded domain is discussed in Section[7]

For any point z € R? with |ZF(z)| # 0 there exists a unit vector (1,v) € 8! C R? such
that

—%uX+vYﬂ%ﬂ:>;ZF@ﬂ, (5.2)

where F(z,t) = ¢(z) —t. Our John curve starting from (z,t) € epi(¢) is the integral
curve of —(uX + vY) for times s € [0, 5], where the time § = 5(z) is

|ZE(2)]

’Z|2m ’ (5'3)

S=¢y

and g9 > 0 is a suitable constant. For s > 3, the John curve is an integral curve of d/0t.
This piece of curve is nonrectifiable. When (z, ¢(z)) € gr(¢) is a characteristic point of
gr(¢),ie.|ZF(z)| = 0, we have § = 0 and the first piece of the curve disappears.

By the rotational invariance of the metric d, in we can assume that u = 1
and v = 0.

Theorem 5.2. Let ¢ € C*(IR?) be a function satisfying (1.2). There exist constants eg > 0 and
A > 0 such that for any z € R? with

_xﬂw>%MHﬂL (5.4)
the curve 7y : [0,00) — R?
s j s — o |ZF(z)|
')/(S) — e X(Zl t)/ lf 0 S S S S=¢€p ‘Z‘Z}i
() +(0,s—5), if §<s<oo

is a John curve in epi(¢) with parameter A starting from (z,t) € epi(¢).

Let A > 0 be the parameter of our John curves. In the proof of the theorem and in the
following sections, we denote by ¢ any constant of the form CA?, where C is an absolute
constant and > 0 is a positive power.

Proof. Without loss of generality, we prove the claim for t = ¢(z), i.e., we construct a
John curve in the epigraph of ¢ starting from a boundary point. In the following we let
zs = z +se;. When s € [0, 5], an explicit formula for (s) is

7(8) =X (2,0(2)) = (2,9(2) + [ |zoP"de).

The definition in (5.3) for § implies that 5§ < £yC|z|, where C > 0 is the constant appearing
in (3.I). We can choose &y > 0 such that &9C < 3. Then, for any s € [0,5] we have

z 3
clal < 2 5
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Further conditions on ¢y will be required below.

Step 1. We claim that for any sufficiently small A > 0 we have B(7(s),As) C epi(¢) for
all0 < s <5.

Froms <5 < 3|z|and Corollary we have the inclusion B(y(s), As) C Box;(y(s), oas)
forany 0 < A <1, where 0, = bjA and by is the constant given by Corollary So our
claim is implied by Box;(7(s),oxs) C epi(¢). We have p € Box;(7(s),0ys) if and only if

p=(z+0,0@ +y [ lzPde+ |z (us + w(0,2)),

with [ull;;, < oxs and u = (u1,uz,u3) = (v, u3). Then the claim in Step 1 is implied by
the inequality

9lzo+0) = 9(z) <y [ [zo"do + |2 (us + w(v,2)) = H, (5.6)
for [|ul|; , < oasand s < 5. The left-hand side of can be expanded using (3.5):

9(zs +0) — p(2) = (ZF(2),v) + |2]*"w (05, 2) + 22, O(J0s ).
By (5.4), |zs| < C|z|, and u; +s > 0 we get

1
9z +0) = 9(2) < [ZFE)|( = 5(m1 +8) + |zl ) + 2" (v, 2) + Clzos .
Since |uz| < oys and |uq| < oys, we have |vs| < Cs and for small A > 0, we get
9(z:+0) = 9(2) < —3|ZF(2)| + 2" (w(0,2) + sy + Cos?). (5.7)

Now we estimate the quantity H in the right-hand side of (5.6). Since ¢ < s < 5 <
%|z], and us > —0,s*> we have the elementary inequalities

2ol — 212" < Clef*Te,
|z5)*"u3 > —C|z|*"0)s®>, and (5.8)
|zs\2mw(v,zs) > |z]2mw(v,zs) — C\z|2msz.
Thus, we obtain
H > |z]*(w(v,z) + ys — C15?) (5.9)

for a suitable absolute constant C;.

By and (5.9), the claim is then implied by the inequality
1
(Co+ Cy)|z*"s < Z|ZF(Z>"

ZF
£/ ‘Z‘Ei,” assoonas £ <

that holds foralls < 3 CO%Q)

Step 2. For s > §, the curve 7 is defined by the formula

v(s) = (zs—, ¢(z)+vy /O§|zg|2mdg +5— 5)
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2m-+2

In the following we lets —3 = 7 . As a function of 7, the diameter of <y restricted to

[0, s] satisfies

] ) m+l
Ar = diam(7y][g syr2m2)) < C(s‘ + min {T, W}) =:5+ mq.

The proof of Theorem [1.4/shows in fact that the inequality above is a global equivalence
fors, T € [0, +o0].

We claim that for any sufficiently small A > 0 we have B(y(s), AA;) C epi(¢) for all
T > 0. By Corollary this claim is equivalent to

Box;((s),0aAr) C epi(¢) and  Boxj(y(s),oaAr) C epi(¢). (5.10)

We prove the inclusion in the left-hand side of (5.10). We have p € Box;(y(s), oaAr)
if and only if

5
p= <Z§ +0,¢(z) + y/O |zo|*"do + |25|*" (43 + w(v, z5)) + sz+2>, (5.11)
with ||u||1/1,2 < oyAr and u = (u1,uz,u3) = (v, u3z). The point p belongs to epi(¢) if
L:=¢(zs+0) — 9(z) < y/o |2|*"do + |z5|*" (us + w(v,25)) + T2 = R.

First we get an upper bound for L. Observe first that assumption (5.4) and the in-
equalities § < 1|z| and [v] < 0, (5 + m,) give

—_

(ZF(z),05) < |ZF(2)|(— 35+ oame ).

I

Thus, using formula we obtain
L= glz+05) — 9(2) = (ZF(2), 05) + |2"w(os,2) + max { |27, [os" }O o )

< |ZF@)|( = g5+ oame ) + 217w (vs,2) + C(" + am?") P+ oimd)  (512)

1
4
1_ 2m < 2 2 2m+2

< |ZF(2)| ( -5t aAmT> + |z| <w(v,z) + 5y + Co5” + aAmT> + oym" e

We compute a lower bound for the right-hand side R. Using we get

5
R :y/o |ZQ|2mdQ+ |zg|2m(u3+w(v,zs—)) +T2m+2
> y|z|*"5 — C|z|*"5% + "2 — o) |z*"m2 4 |z (w (v, 2) — u28) (5.13)

> 722 o |z|Pm <w(v,z) + 5y — C15° — aArﬁ%).
Then, the inequality L < R follows from

1
oame| ZF(2)] + 2 (G5 + aum? ) + oam2"2 < S5|ZF(z)] + T2 (5.14)
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To prove (5.14), we start from the second term. By the definition of 5, we have
C2§2‘Z|2m = 80C2|ZF(Z)|S_ <

as soon as ¢ satisfies gCo < 1/4. This is the last time we modify the choice of ¢.
Next we look at the first term. Observe that

m+1

Rk

Tm+1

- UA(!ZF(Z)IZ )]

02 |ZE(2)|my = 02| ZE(z)| min {T o S B

} <alzFG)|

. = ZF(z)|? . .
Then, since }|ZF(z)|5 + t2"2 = %"% + 12"+2, we can finish the estimate as soon as

o is small with respect to absolute constants (which include gy, now).
The estimate of the third term is easy:

Tm+1

2
’W}) < oy T2,

o |z|?"m2 = oy |z|*" ( min {T
which is correctly estimated, provided that o is small enough. Finally, we have

) Tm+1y \ 2m+2
U—Am%.m+2 = O—A(mln{r,"m}) S U)\sz+2,
z

which again satisfies the required estimate.
To conclude the proof, we have to check the inclusion in the right-hand side of (5.10).
In this case the box Box;(y(s), 0 (5 + m<)) is made of points of the form

5
(zs— + 9, 9(z) + y/o |2o|*"do + T2 + uz + |z5*" w (o, Zg)).

The unique difference with is that the term u3 replaces the term |z§|2mu3, and now
|us| < op (5 + me)? 2,

The estimate from above for L remains unchanged, because it does not involve u3. In
the estimate from below for R, we need the following evaluation for the term u3:

uz > —0y (5 4+ mo)?"2 > —0y |2|*"5* — oym2" T2,
Therefore, the inequality (5.14) remains unchanged and the proof can be concluded argu-

ing as in the previous case. O

6. Uniform property of entire admissible epigraphs

We recall the definition of a uniform domain, specialized to the metric space (IR?,d).

Definition 6.1. An open set QO C R? is a uniform domain if there existe > 0 and 6 > 0
with the following property. For any pair of points x,y € () there is a continuous curve
7 :[0,1] = Qsuch thaty(0) = x,y(1) =y,

diam(y) <67 'd(x,y), (6.1)
and, letting A; = min{diam(|(o ), diam(7[y,1))}, for any ¢ € [0, 1] we have
B(7y(t),eAs) C Q. (6.2)
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Uniform domains are also known as (¢, §)-domains. As for John domains, the curves
in our definition are not required to be rectifiable. By the results of [MS79], this is equiv-
alent to the more standard definition which requires rectifiability.

We consider an unbounded domain of the epigraph type Q) = epi(¢) = {(z,t) €
R3 : t > ¢(z)}, where ¢ € C®(IR?) is an m-admissible function. For any pair of points
p,q € Q, we construct a curve connecting them and satisfying the conditions and
with uniform constants 6 and e. The case of a bounded domain is discussed in
Section[7l

Theorem 6.2. Let ¢ € C®(IR?) be a function satisfying ([.2). Then, the epigraph Q = epi(¢)
is a uniform domain.

Proof. Letp = (z,¢(z) +b)and g = ({, ¢(C) + B), with b, B > 0, be points in the epigraph
of ¢. We can without loss of generality assume that

|ZF(z)| max{ |ZF(z)] \ZF(O!} > 0. 6.3)

[z[> 7 |g P

|z[2m
The maximum can be 0, even for arbitrarily close points. This happens for instance in

ZEGE)] 0 for z = 0.

‘Z 2m
Let 1 > 0 be a parameter that will be fixed along the proof. We distinguish two cases:

ZF ZF
d(p,q) < ymax{| |z[§§“)|' | mgi)’} (Case A);

d(p.q) = ymax{ |Z|ZF’§,ZH)‘/ ‘Z‘;gi)’} (Case B).

Example By assumption (1.2) we can define continuously

Roughly speaking, the maximum appearing in the right-hand side describes quantita-
tively “how much” the involved points are close to the characteristic set. In case A,
where d(p,q) is much smaller than such maximum, the first pieces of the John curves
from p and g are “parallel” and the curve realizing the uniform condition is constructed
using the first pieces of 7, and ;. In Case B, where the distance among p and g is large,
the curve realizing the uniform condition is constructed using both pieces of the John
curves starting from p and g.

We can without loss of generality assume that holds at the point z,i.e.: —XF(z) =
|XF(z)| > 1|ZF(z)|. Then, if we denote by g and A > 0 the parameters fixed in Section
we know that the curve

S
(25,40(2) +b +y/ \Ze\z’”de), ifs<s= €0|Z|F,§Z)|
72(s) = O§ :
(zg,q)(z) +b +y/0 |zo|*"do + 5 — §>, ifs >3,

is a John curve with parameter A.

Analysis of Case A. We claim that there exists 4 > 0 such that the curve

(€5/§0(€) +5+,7/05’€Q‘2mdg), ifs <§=ggl 22/
Y7(s) = §
(§§/CP(§)+5+77/0 ]§Q|2mdg+s—s=>, ifs >3
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is a John curve with parameter A. To prove this claim, it suffices to show that —XF({) >
HZF(©Q)| if Case A holds and y is small enough.

From (1.2) it follows that |[VZF(z)| < C|z|*" for all z € R? and thus the function
z = ]Z F(z ] / |z|?™ is globally Lipschitz continuous on IR. Let L be the Lipschitz constant.
By (6.3) and by the Case A with sufficiently small #, we have

XF(@Q) | XF(2) 1|ZE(2)| 1|ZF@)| . |ZF()
T T e M Az e M) 2 5 e~
1|ZE@)| _ 11ZF(@Q))
ZL P T4 P

Also the mapping z — 5(z) in (5.3)) is Lipschitz continuous. Then, for y small enough, in
the Case A the times § = 5(z) and 5§ = 5(() satisfy

5< (6.4)

5o1]]

<

N —
N\UJ

Finally, we also have | —z| < d(p,q) < u ‘Z‘ZF‘;Z")‘ < Cplz| < }|z|, for p sufficiently small.
We are now ready to define the curve joining p and g and satisfying (6.1), (6.2). For a
suitable H > 0, let

s=Hd(p,q). (6.5)

Then, the curve v is the concatenation of v, a length-minimizing path % joining

031
7(0) = 92(5) and ¥(1) = ¢(5), and the opposite of 'yg‘
We claim that there exist H > 0 and ¢ > 0 such that the curve 7 satisfies (6.1) and (6.2).
We preliminarily show that:

(i) § < min{3,5}, i.e., the points 7, (5) and 7, (5) belong to the first piece of the curves
7z and 7, respectlvely,
(i) d(7;(3),72(8)) < 48, where A is the John constant of 77 and 1;
(iii) diam(7y) < Cd(p, q)

Condition (6.]] ISE We show that[(D}(i)]imply (6.2). Fors <5, by As < diam(7:]jo,)
and by the cone property we have

B(v(s), ABs) C B(72(s), A diam(7z]pos))) C epi(¢).

Then holds with ¢ = A. The same happens for points . (s) with s <§. Finally, for a
point 7(s*) in the intermediate part, by [ii)| we have

dist(7(s°), gr(9)) > dist(7:(5), gr()) ~ 55
(6.6)

) AL AL
> Adiam(vz(joq) — 5 diam(7z[jog) = 5 diam(7z[pg)-

In order to get a lower bound for the last diameter, we use the length-minimizing prop-
erty of 4 and property (i), which give

N\>»
>

= diam (2], S])

diam (7o) < d(7(0),7(1)) < <5
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Therefore, we have diam (vz|jo5 + 7j0,++)) < 2diam (7z]5)) and then it is easy to con-
clude that holds with ¢ = %.

Now we prove (i)} By (6-4) this is implied by § < 15. By (6.5), Case A, (6.3), we have

§< Hpu ‘lepl @l _ g p- Thus, we deduce thatholds provided that

Hy < seo (6.7)

This is the first requirement on H and yu. This restriction is compatible with further con-
ditions made below.

Next we prove|[(ii)] Theorem|[I.4] gives

4008, 7(6) < Colt —2/+ Comin { T [0 ©8)
where
© = 9(0) ~ 9lz) + B+ [ (1G> — yle Yo+ I (3.
Let ® = O + O, + O3, with

O1 = ¢(0) — ¢(z) + B b+ |z[""w(z,0),
O = |z w(z5,55) — |21 w(z,0),

s 2 2
0= [ (112"~ ylzl")de.

The first term in the right-hand side of can be estimated as follows

A A
ColZ —z| < Cod(p.q) < ng(Pr”I) -8
as soon as H is large enough to ensure that
c< 2, (6.9)

8

where Cy is the absolute constant in (6.8). We used definition (6.5) of 5.
Concerning the second term in the right-hand side of (6.8), we claim that for all j =
1,2,3 we have
0,172
]
|z[™

A
Co min{|®j|zﬁ, } < SHi(p,q). (6.10)
By Theorem [1.4] we have
. 1 A
Comin{|@| =, 1@1[/2/[2|"} < Cod(p, ) < CCod(p,q) < SHA(p,0),
as soon as H is large enough so that

CCy < ZH. 6.11)
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To evaluate the term with @, we apply the inequalities
@] = | (252" — 122" ) w(z,€) + 252800 — y) | < ClzP"|¢ — 28
< Clz[*"d(p,q)s = Clz[*"Hd(p,q)".

Thus, we deduce that for some absolute constant C, > 0 we have

/!> A
O < Cad(p,q)VH < Co ' g Hd(p,q)

2"~
as soon as

A
Gy < c(;lgm. (6.12)

Finally, we estimate ©s:

5 s
03] < Iy =11 [ [zol*"do+Inl] [ (=" = |2o*")de
< Cslzl*"é(p, q) + Csly |||z - ]
< Cslz|*"d(p,q) = Clz|*"d(p,q)*H,
and we end up with again with the requirement (6.12).
To conclude the proof, we choose H > 0 large enough so that (6.9), (6.11) and (6.12)
hold. This implies Then we choose # > 0 such that holds. This implies

The diameter estimate in [(iii)| holds in terms of such constants and the proof of Case A is
concluded.

Analysis of Case B. Let us consider the second piece of the curve from (z, ¢(z) + b),

|[ZE(2)]
|z[2m

€0

5
72(s) = (zg,t+b+y/ |zg\2mdg+s—§> fors >3
0

Let also (£, ¢() + B) be such that Case B holds. Then, there is a unit vector w = (u,v) €
IR? such that the curve 7 is a A-John curve in epi(¢) starting from (, ¢() + ). When
s >35=1¢9|ZF(2)|/|Z|*", the curve is

106 = (C+50 90 + b+ w@w,0) [ |0+ quPrdo+s-3).

Note that the numbers 5§ and 5 could both vanish. Furthermore, we will assume without
loss of generality that diam (1| 05 ]) > diam (7| 0 §c])'

For T > 0 consider the points ,(5;) and 7;(5;), where

2m+2’ 3 — §_{_T2m+2.

We claim that there exists M > 0 such that forall p = (z, ¢(z) + b) and g = ({, ¢({) +
B) for which Case B holds, if T > 0 satisfies

diam (%‘[Oﬁz]) = max{diam (’yz}[ogz]),diam (’yd[%d)} = Md(p,q), (6.13)
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then we have N
d(% (@)m(@;)) < 5 diam (72

where A is the John constant of the curves.

Notice that for any M, p, q there is always a T such that holds because the left-
hand side of is increasing in T and tends to +o0, as T — +oo.

We prove the claim. By the invariance of the distance with respect to vertical transla-
tions we have

A(7=(5+ T e (3 + 72 ) = d(72(5), 7 ()

< d(72(5),72(0)) +d(72(0), 7£(0)) +d(v¢(5), 7¢(0))

1ZF(2) 1ZF(Q)
S0 AP T

[0@})’ (6.14)

2¢
< 7061(;9,0/) +d(p,q)

1 280 . .
= <H + 1) max{d1am(’yz|[ng}),dlam(’yg|[0,§d)},

by (6.13). Thus (6.14) holds if M is large enough, and the claim is proved.

To conclude the proof, we show that the path 7, given by the concatenation of 7| 05,7
a length minimizing path 4 connecting 7(0) = 7.(5;) and 4(1) = 7¢(57) and the reverse
of 7| 05, satisfies the (¢, 6)-condition. Since the diameter estimate is contained in

the claim above, we are left with the proof of (6.2).

Let g be a point of 7. If ¢ = 7,(s) with s < 5, or g = y,(s) with s < §;, then (6.2)
follows with ¢ = A from the John property (5.1). If g = 7(s*), then we argue as in (6.6).
precisely

dist(7(s"), gr¢) > dist(72(52), gr ¢) — d(¥(s"), 712(52))

. o . (6.15)
> Adiam(yz(jo5)) — diam(y) 2 7 diam(7z[pg,)),

>

by (6.14). Finally, to get a lower estimate of the latter diameter with diam(7z|s,) +
9l10,s+)), which will give the John property, it suffices to use the length minimizing prop-
erty of y

. ~ i~ AL
dlam(7|[0,s*}) < d(’)’(O), 7(1)) < Edlam (72‘[032])'

Thus, as in Case A, we get the correct lower bound for the last line of (6.15) and the proof
is easily concluded. O

7. Bounded admissible domains are uniform

In this section we prove Theorems and in the case of a bounded m-admissible do-
main. Now we assume that m € IN is an integer.
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Proof of Theorem Let QO C R® be an m-admissible domain. By a standard localization

argument (see e.g. [MMO05a, Proposition 2.5]), it suffices to show that for all pg € Q2 there

is a neighborhood Ay, of po in R? such that for all p,q € Ap, there is a continuous curve

7 :[0,1] = QN Ay, satisfying 7(0) = p and y(1) = g and such that and hold.
There are two cases:

1. po is a noncharacteristic point, i.e., span{X(po), Y(po) } is not contained in T},,002.
2. po is a characteristic point of 0Q).

In Case|l} the claim is proved in [MMO05a, Theorem 1.1]. To use this result, we need a
C* boundary and smooth vector fields. For this reason we require m € IN.

In the Case 2} in a neighborhood of py the boundary of () is a graph of the type
t = ¢(z) for an m-admissible function ¢ € C®(D) for some open set D C R%. The claim
is proved in Sections[5and [6} O

Proof of Theorem By compactness, we can cover d() with a finite union of m-admissible
graphs, together with a compact subset K C Q) containing only noncharacteristic points.
At points p € K, the Ahlfors estimates is proved in [MMO02, Corollary 1]. To use
this result, we need a smooth boundary and smooth vector fields (m € IN).
On m-admissible graphs, the Ahlfors estimate is proved in Section 4 O
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