An important limitation of aluminium alloys for mechanical applications is their poor tribological behaviour. In this study, surface treatment by plasma electrolytic oxidation (PEO) has been applied to two widely used aluminium alloys: A359 (hypoeutectic Al–Si–Mg) cast alloy and AA7075 (Al–Zn–Mg–Cu) wrought alloy, in order to improve their wear resistance, under sliding and abrasive wear conditions. The main aim of this work was the comparison of the properties and wear resistance of the oxide layers grown under the same PEO treatment conditions on two different aluminium alloys which might be coupled in engineered components. Significant differences in the phase composition, microstructure and mechanical properties measured by microindentation were observed in the oxide layers grown on the two substrates, and were ascribed to the effects of the different compositions and microstructures of the substrate alloys. Abrasion tests were carried out in a micro-scale abrasion (ball-cratering) test, with both alumina and silicon carbide abrasive particles. The results demonstrated the influence of the abrasive material on wear behaviour: whereas relatively aggressive SiC particles gave comparable results for both PEO treated and untreated samples, with the less aggressive Al2O3 abrasive the wear rates of the PEO treated samples, for both substrates, were significantly lower than those of the untreated substrates. In unlubricated sliding the PEO treatment significantly increase the wear resistance of both the aluminium alloys, at low applied load. In this condition the wear behaviour of the PEO treated alloys is strongly influenced by the stability of a protective Fe–O transfer layer, generated by wear damage of the steel counterpart. Under high applied loads however, the transfer layer is not stable and the hardness of the PEO layer, as well as the load bearing capacity of the substrate, become the main factors in influencing wear resistance.
G. Sabatini, L. Ceschini, C. Martini, J.A. Williams, I.M. Hutchings (2010). Improving sliding and abrasive wear behaviour of cast A356 and wrought AA7075 aluminium alloys by plasma electrolytic oxidation. MATERIALS & DESIGN, 31, 816-828 [10.1016/j.matdes.2009.07.053].
Improving sliding and abrasive wear behaviour of cast A356 and wrought AA7075 aluminium alloys by plasma electrolytic oxidation
CESCHINI, LORELLA;MARTINI, CARLA;
2010
Abstract
An important limitation of aluminium alloys for mechanical applications is their poor tribological behaviour. In this study, surface treatment by plasma electrolytic oxidation (PEO) has been applied to two widely used aluminium alloys: A359 (hypoeutectic Al–Si–Mg) cast alloy and AA7075 (Al–Zn–Mg–Cu) wrought alloy, in order to improve their wear resistance, under sliding and abrasive wear conditions. The main aim of this work was the comparison of the properties and wear resistance of the oxide layers grown under the same PEO treatment conditions on two different aluminium alloys which might be coupled in engineered components. Significant differences in the phase composition, microstructure and mechanical properties measured by microindentation were observed in the oxide layers grown on the two substrates, and were ascribed to the effects of the different compositions and microstructures of the substrate alloys. Abrasion tests were carried out in a micro-scale abrasion (ball-cratering) test, with both alumina and silicon carbide abrasive particles. The results demonstrated the influence of the abrasive material on wear behaviour: whereas relatively aggressive SiC particles gave comparable results for both PEO treated and untreated samples, with the less aggressive Al2O3 abrasive the wear rates of the PEO treated samples, for both substrates, were significantly lower than those of the untreated substrates. In unlubricated sliding the PEO treatment significantly increase the wear resistance of both the aluminium alloys, at low applied load. In this condition the wear behaviour of the PEO treated alloys is strongly influenced by the stability of a protective Fe–O transfer layer, generated by wear damage of the steel counterpart. Under high applied loads however, the transfer layer is not stable and the hardness of the PEO layer, as well as the load bearing capacity of the substrate, become the main factors in influencing wear resistance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.