Large earthquakes are a potentially important source of relative sea level variations, since they can drive global deformation and simultaneously perturb the gravity field of the Earth. For the first time, we formalize a gravitationally self-consistent, integral sea level equation suitable for earthquakes, in which we account both for direct effects by the seismic dislocation and for the feedback from water loading associated with sea level changes. Our approach builds upon the well-established theory first proposed in the realm of glacio-isostatic adjustment modelling. The seismic sea level equation is numerically implemented to model sea level signals following the 2004 Sumatra–Andaman earthquake, showing that surface loading from ocean water redistribution (so far ignored in post-seismic deformation modelling) may account for a significant fraction of the total computed post-seismic sea level variation.

MELINI D, SPADA, G., PIERSANTI A. (2010). A sea level equation for seismic perturbations. GEOPHYSICAL JOURNAL INTERNATIONAL, 180(1), 88-100 [10.1111/j.1365-246X.2009.04412.x].

A sea level equation for seismic perturbations

SPADA, GIORGIO;
2010

Abstract

Large earthquakes are a potentially important source of relative sea level variations, since they can drive global deformation and simultaneously perturb the gravity field of the Earth. For the first time, we formalize a gravitationally self-consistent, integral sea level equation suitable for earthquakes, in which we account both for direct effects by the seismic dislocation and for the feedback from water loading associated with sea level changes. Our approach builds upon the well-established theory first proposed in the realm of glacio-isostatic adjustment modelling. The seismic sea level equation is numerically implemented to model sea level signals following the 2004 Sumatra–Andaman earthquake, showing that surface loading from ocean water redistribution (so far ignored in post-seismic deformation modelling) may account for a significant fraction of the total computed post-seismic sea level variation.
2010
MELINI D, SPADA, G., PIERSANTI A. (2010). A sea level equation for seismic perturbations. GEOPHYSICAL JOURNAL INTERNATIONAL, 180(1), 88-100 [10.1111/j.1365-246X.2009.04412.x].
MELINI D; SPADA, GIORGIO; PIERSANTI A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/771809
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact