We study the properties of an M-estimator arising from the minimization of an integrated version of the quantile loss function. The estimator depends on a tuning parameter which controls the degree of robustness. We show that the sample median and the sample mean are obtained as limit cases. Consistency and asymptotic normality are established and a link with the Hodges–Lehmann estimator and the Wilcoxon test is discussed. Asymptotic results indicate that high levels of efficiency can be reached by specific choices of the tuning parameter. A Monte Carlo analysis investigates the finite sample properties of the estimator. Results indicate that efficiency can be preserved in finite samples by setting the tuning parameter to a low fraction of a (robust) estimate of the scale.

Catania L., Luati A. (2020). Robust estimation of a location parameter with the integrated Hogg function. STATISTICS & PROBABILITY LETTERS, 164, 1-7 [10.1016/j.spl.2020.108812].

Robust estimation of a location parameter with the integrated Hogg function

Catania L.;Luati A.
2020

Abstract

We study the properties of an M-estimator arising from the minimization of an integrated version of the quantile loss function. The estimator depends on a tuning parameter which controls the degree of robustness. We show that the sample median and the sample mean are obtained as limit cases. Consistency and asymptotic normality are established and a link with the Hodges–Lehmann estimator and the Wilcoxon test is discussed. Asymptotic results indicate that high levels of efficiency can be reached by specific choices of the tuning parameter. A Monte Carlo analysis investigates the finite sample properties of the estimator. Results indicate that efficiency can be preserved in finite samples by setting the tuning parameter to a low fraction of a (robust) estimate of the scale.
2020
Catania L., Luati A. (2020). Robust estimation of a location parameter with the integrated Hogg function. STATISTICS & PROBABILITY LETTERS, 164, 1-7 [10.1016/j.spl.2020.108812].
Catania L.; Luati A.
File in questo prodotto:
File Dimensione Formato  
11585_767389.pdf

Open Access dal 20/05/2022

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/767389
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact