Given an exceptional simple complex algebraic group G and a symmetric pair (G,K), we study the spherical nilpotent K-orbit closures in the isotropy representation of K. We show that they are all normal except in one case in type G2, and compute the K-module structure of the ring of regular functions on their normalizations.

Bravi, P., Gandini, J. (2020). Regular functions on spherical nilpotent orbits in complex symmetric pairs: Exceptional cases. KYOTO JOURNAL OF MATHEMATICS, 60(3), 1051-1096 [10.1215/21562261-2019-0056].

Regular functions on spherical nilpotent orbits in complex symmetric pairs: Exceptional cases

Gandini, Jacopo
2020

Abstract

Given an exceptional simple complex algebraic group G and a symmetric pair (G,K), we study the spherical nilpotent K-orbit closures in the isotropy representation of K. We show that they are all normal except in one case in type G2, and compute the K-module structure of the ring of regular functions on their normalizations.
2020
Bravi, P., Gandini, J. (2020). Regular functions on spherical nilpotent orbits in complex symmetric pairs: Exceptional cases. KYOTO JOURNAL OF MATHEMATICS, 60(3), 1051-1096 [10.1215/21562261-2019-0056].
Bravi, Paolo; Gandini, Jacopo
File in questo prodotto:
File Dimensione Formato  
IRIS BG 2020b.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 578.18 kB
Formato Adobe PDF
578.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/766756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact