Given an exceptional simple complex algebraic group G and a symmetric pair (G,K), we study the spherical nilpotent K-orbit closures in the isotropy representation of K. We show that they are all normal except in one case in type G2, and compute the K-module structure of the ring of regular functions on their normalizations.
Bravi, P., Gandini, J. (2020). Regular functions on spherical nilpotent orbits in complex symmetric pairs: Exceptional cases. KYOTO JOURNAL OF MATHEMATICS, 60(3), 1051-1096 [10.1215/21562261-2019-0056].
Regular functions on spherical nilpotent orbits in complex symmetric pairs: Exceptional cases
Gandini, Jacopo
2020
Abstract
Given an exceptional simple complex algebraic group G and a symmetric pair (G,K), we study the spherical nilpotent K-orbit closures in the isotropy representation of K. We show that they are all normal except in one case in type G2, and compute the K-module structure of the ring of regular functions on their normalizations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
IRIS BG 2020b.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
578.18 kB
Formato
Adobe PDF
|
578.18 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.