The Average Cumulative representation of fuzzy intervals is connected with the possibility theory in the sense that the possibility and necessity functions are substituted by a pair of non decreasing functions defined as the positive and negative variations in the Jordan decomposition of a membership function. In this paper we motivate the crucial role of ACF in determining the membership function from experimental data; some examples and simulations are shown to state the robustness of the proposed construction.

Maria Letizia Guerra, Laerte Sorini, Luciano Stefanini (2020). On the approximation of a membership function by empirical quantile functions. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 124(September), 133-146 [10.1016/j.ijar.2020.06.012].

On the approximation of a membership function by empirical quantile functions

Maria Letizia Guerra
Methodology
;
2020

Abstract

The Average Cumulative representation of fuzzy intervals is connected with the possibility theory in the sense that the possibility and necessity functions are substituted by a pair of non decreasing functions defined as the positive and negative variations in the Jordan decomposition of a membership function. In this paper we motivate the crucial role of ACF in determining the membership function from experimental data; some examples and simulations are shown to state the robustness of the proposed construction.
2020
Maria Letizia Guerra, Laerte Sorini, Luciano Stefanini (2020). On the approximation of a membership function by empirical quantile functions. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 124(September), 133-146 [10.1016/j.ijar.2020.06.012].
Maria Letizia Guerra; Laerte Sorini; Luciano Stefanini
File in questo prodotto:
File Dimensione Formato  
GueSorStef_Special-IssueColetti2019_revised.pdf

Open Access dal 09/07/2022

Descrizione: AAM
Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.73 MB
Formato Adobe PDF
2.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/765625
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact