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Abstract

The Average Cumulative representation of fuzzy intervals is con-

nected with the possibility theory in the sense that the possibility and

necessity functions are substituted by a pair of non decreasing func-

tions defined as the positive and negative variations in the Jordan

decomposition of a membership function. In this paper we motivate

the crucial role of ACF in determining the membership function from

experimental data; some examples and simulations are shown to state

the robustness of the proposed construction.
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1 Introduction

Fuzzy numbers and possibility theory have been initiated by Zadeh in [31],

as mathematical tools to formulate and reason about uncertainty in com-

plex decision making events. During the recent years, they are receiving an

increasing attention in research, as they constitute a complete and useful

setting for modelling and managing uncertainty, in particular when inform-

ation is characterized by partial or incomplete knowledge and when sources

of empirical data sets are heterogeneous, as it is shown by Dubois in [8] and

investigated in [16] concerning its potentialities arising in applications.

Following a similar approach, we introduced in [29] the Average Cu-

mulative Function (ACF) representation for fuzzy intervals focusing on the

properties it shares with the Cumulative Distribution Function (CDF) for

probability distributions. We also showed that the ACF can be uniquely

defined for any fuzzy interval and that any alfa-cut of a fuzzy interval can

be directly deduced from the ACF. Regarding applications, ACF amounts to

be a powerful instrument in order to deduce the membership function from

the any kind of time series, a topic that has just been a matter of interest

in [16] and [6]. An exhaustive overview of methods for building possibility

distributions is in [17] where qualitative and quantitative possibility distri-

butions are explored within order or similarity-based statistical methods. A

wide scenario of real life decisions arising in company’s management and

based on possibility theory is analyzed in [3].

The possible connections between possibility and probability are studied

in many contributions (see, e.g., [3], [4], [10], [14], [21], [22], [24], [25]); in [13]
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the problem of mutually transforming possibility measures into probability

measures is handled with a deep attention to the philosophical nature of the

two approaches that produces not equivalent representations of uncertainty.

An additional class of transformations is extensively analyzed in [20] where

the Arising Accumulation Transformation is applied to some decision making

problems.

The construction of a possibility distribution when the probabilities are

unknown and a data sample represented by a histogram is available is pro-

posed in [22]; in [28] possibility distributions are deduced as families of up-

per and lower bounded probabilities identified by an informational distance

function.

In this paper, we apply the properties of AC functions to (a) generating

samples from fuzzy intervals (adopting the insuffi cient reason principle),

and (b) estimating a membership function from empirical data.

The organization of the paper is based on four sections; after the In-

troduction, section 2 details the main properties of ACF. In section 3, sub-

divided into two subsections, examines simple ways to generate samples from

possibility distributions associated to fuzzy intervals. Then (subsection 3.2),

a general procedure is suggested to obtain the AC function from empirical

data and to estimate a corresponding membership function under suitable

assumptions on the location of its core; some computational experiments are

included. Conclusions and future research lines are summarized in section

4.
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2 Average cumulative functions associated to a

fuzzy interval

We denote by RF the space of real fuzzy intervals, with normal, upper

semi-continuous and quasi concave membership function u : R → [0, 1] of

bounded support (see [2], [9]). A fuzzy interval u ∈ RF is defined in terms

of its membership function u : R −→ [0, 1] of the form

u(x) =



0 if x < a

uL(x) if a ≤ x < c

1 if c ≤ x ≤ d

uR(x) if d < x ≤ b

0 if x > b.

(1)

We suppose a compact support [a, b] and a compact non-empty core

[c, d] ⊂ [a, b] where it holds that a < c ≤ d < b ∈ R; uL : [a, c] −→ [0, 1[ is the

left side of the fuzzy interval, defined as a non-decreasing right-continuous

function, uL(x) > 0 for x ∈]a, c], and uR : [d, b] −→ [0, 1] is the right side,

defined as a non-increasing left-continuous function, uR(x) > 0 for x ∈ [d, b[.

The two functions uL(x) and uR(x) can be extended to the real domain

by setting

uLext(x) =


0 if x < a

uL(x) if a ≤ x < c

1 if x ≥ c

(2)
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uRext(x) =


1 if x ≤ d

uR(x) if d < x ≤ b

0 if x > b.

(3)

An extensive literature is devoted to the description of a fuzzy interval

u ∈ RF as a possibility distribution on the real numbers such that a pair

of cumulative distribution functions, called the lower and the upper CDFs

of u, respectively, become the extended left side function uLext(x) and the

extended right side function uRext(x). In particular, instead of the possibility

and necessity functions (introduced in [31], [10] and extended in [3] and [15],

[16], [18]); the main summarized results introduced in [29] follow, starting

with the pair of functions FRu , F
L
u : R −→ [0, 1] :

FRu (x) = 1− uRext(x) =


0 if x ≤ d

1− uR(x) if d < x ≤ b

1 if x > b.

(4)

FLu (x) = uLext(x). (5)

The two functions FLu and F
R
u are non decreasing; F

L
u is right continuous

while FRu is left continuous because of the upper semi-continuity of u.It also

holds that:

u (x) = FLu (x)− FRu (x) ∀x ∈ R. (6)

When equation (6) is viewed as the Jordan decomposition of u, then FLu

and FRu are the positive and the negative variations of u and given the total
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variation function Vu (x), x ∈ R,

Vu (x) =


0 if x ≤ a

sup
Px,n

{
n∑
j=1
|u (tj)− u (tj−1)| ; tj ∈ Px,n

}
if a < x ≤ b

Vu (b) if x > b

we can write

FLu (x) =
Vu (x) + u(x)

2
(7)

FRu (x) =
Vu (x)− u(x)

2
. (8)

where, for x ∈]a, b], Px,n = {a = t0 < t1 < ... < tn = x} is a finite de-

composition of [a, x] with n subintervals and the sup(...) is performed over

all Px,n with arbitrary n ∈ N and arbitrary points tj , j = 0, 1, ..., n.

Definition 1 For a fixed value of λ ∈ [0, 1], the λ-Average Cumulative

Function (λ-ACF for short) of u is defined to be the following convex com-

bination of FLu and FRu , for all x ∈ R,

F (λ)u (x) = (1− λ)FLu (x) + λFRu (x) (9)

=



0 if x < a

(1− λ)uL(x) if a ≤ x < c

1− λ if c ≤ x ≤ d

1− λuR(x) if d < x ≤ b

1 if x > b.

F
(λ)
u is non-decreasing, right continuous on ]−∞, d[ and left continuous on
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]c,+∞[. For the value λ = 1
2 we denote F

( 1
2
)

u (x) simply by Fu(x).

Proposition 2 For a given fuzzy interval u ∈ RF and a number ρ ∈ R, the

λ-ACF satisfies the translation property:

F
(λ)
u+ρ(x) = (1− λ)vLext(x) + λvRext(x) (10)

= (1− λ)uLext(x− ρ) + λuRext(x− ρ)

= F (λ)u (x− ρ).

where v = u + ρ is the translated fuzzy interval and v(x) = u(x − ρ) is the

membership function.

An interesting relation holds:

Lemma 3 Let u ∈ RF and let −u ∈ RF be its opposite interval; then, the

following equality is true for all λ ∈ [0, 1]

F (λ)u (−x) + F (1−λ)−u (x) = 1, for all x ∈ R

where F (1−λ)−u is the (1− λ)-ACF of −u.

For a given non-decreasing function F : [a, b] −→ [0, 1], the generalized

inverse (also called the quantile function of F in probability theory, see, e.g.

[19], when F is càdlàg) is defined to be the function F−1 : [0, 1] −→ [a, b]

such that

F−1(α) = inf{x|F (x) ≥ α} for all α ∈ ]0, 1] and F−1(0) = a. (11)
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The main theorem (proved in [29]) states that a partial càdlàg property

of F (x) is suffi cient to determine the α-cuts [u−α , u
+
α ] of u for α ∈]0, 1].

Recall that the fuzzy interval −u has α-cuts given by [−u+α ,−u−α ], so that,

in particular, u+α = −(−u)−α .

Theorem 4 Let u ∈ RF and let F (λ)u , F (1−λ)−u be the λ-ACF of u and the

(1 − λ)-ACF of −u, respectively, for any given value λ ∈]0, 1[. For all

α ∈]0, 1], the α-cut [u−α , u+α ] of u is given by

u−α (λ) = inf
{
x ∈ [a, c]|F (λ)u (x) ≥ (1− λ)α

}
(12)

=
(
F (λ)u |∗

)−1
((1− λ)α)

u+α (λ) = −(−u)−α = − inf
{
x ∈ [−b,−d]|F (1−λ)−u (x) ≥ λα

}
(13)

= −
(
F
(1−λ)
−u |∗

)−1
(λα)

where
(
F
(λ)
u |∗

)−1
and

(
F
(1−λ)
−u |∗

)−1
are the generalized inverses of the re-

strictions of F (λ)u and F (1−λ)−u to the subintervals ] −∞, c] and ] −∞,−d],

respectively.

Assume for simplicity the membership function u(x) (consequently F (x))

continuous.

In the particular case of λ = 1
2 , denoting Fu = F

( 1
2
)

u and F−u = F
( 1
2
)

−u , we
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have F−u(x) = 1− Fu(−x) for all x, and we obtain, for α ∈]0, 1],

u−α = (Fu)
−1
(α
2

)
(14)

u+α = (Fu)
−1
(
1− α

2

)
.

Given any fixed value λ ∈ ]0, 1[ , consider a non-decreasing function

F : R −→ [0, 1] satisfying the properties:

1) aF = sup{x|F (x) = 0} ∈ R, bF = inf{x|F (x) = 1} ∈ R (clearly

aF ≤ bF );

2) cF = inf{x|F (x) ≥ 1 − λ} ∈ R, dF = sup{x|F (x) ≤ 1 − λ} ∈ R

(clearly cF ≤ dF );

3) aF ≤ cF ≤ dF ≤ bF and F is right-continuous on [aF , cF [, left-

continuous on ]dF , bF ] and F (x) = 1− λ for all x ∈ [cF , dF ].

Then there exists a unique fuzzy interval uF ∈ RF with λ-ACF, for

λ ∈ ]0, 1[ given by F . Indeed, the membership function of uF is given by

(compare with Definition 1)

uF (x) =



0 if x < aF

1
1−λF (x) if aF ≤ x < cF

1 if cF ≤ x ≤ dF
1
λ (1− F (x)) if dF < x ≤ bF

0 if x > bF

(15)

and, from the assumptions 1), 2) and 3) on F , uF is a fuzzy interval (the

proof is immediate by directly verifying that uF ∈ RF ).

We denote by Fλ(R) the family of all functions F : R −→ [0, 1] satisfying
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properties 1)-2)-3).

In the particular case of λ = 1
2 , the family Fλ(R) will be simply denoted

by F(R); the 1
2−AC function of u ∈ RF is a non-decreasing function Fu :

R −→ [0, 1] such that Fu(x) = 1
2u

L(x) on [a, c[, Fu(x) = 1− 1
2u

R(x) on ]d, b]

and Fu(x) = 1
2 on the core [c, d] of u, i.e., u(x) = 2min{F (x), 1− F (x)}.

In [29] we have formalized a bijection between the space RF of real fuzzy

intervals and the spaces Fλ(R) of non-decreasing functions F : R −→ [0, 1]

such that, for a fixed λ ∈]0, 1[, F (x) is right-continuous on [aF , cF ] and

left-continuous on [dF , bF ] and F (x) = 1− λ on [cF , dF ] where



aF = sup{x|F (x) = 0} ∈ R,

bF = inf{x|F (x) = 1} ∈ R,

cF = inf{x|F (x) ≥ 1− λ} ∈ R,

dF = sup{x|F (x) ≤ 1− λ} ∈ R.

(16)

Each F ∈ Fλ(R) is called a λ-AC function.

For a given u ∈ RF with membership

u(x) =



0 if x < a or x > b

uL(x) if a ≤ x < c

1 if c ≤ x ≤ d

uR(x) if d < x ≤ b

(17)
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the λ-AC function F (λ)u ∈ Fλ(R) corresponding to u is

F (λ)u (x) =



0 if x < a

(1− λ)uL(x) if a ≤ x < c

1− λ if c ≤ x ≤ d

1− λuR(x) if d < x ≤ b

1 if x > b

(18)

Vice versa, if F ∈ Fλ(R) is given and λ ∈]0, 1[ is fixed, with aF ≤ cF ≤

dF ≤ bF , the corresponding u ∈ RF is

uF,λ(x) =



0 if x < aF or x > bF

1
1−λF (x) if aF ≤ x < cF

1− λ if cF ≤ x ≤ dF
1
λ (1− F (x)) if dF < x ≤ bF

. (19)

Remark that an equivalent compact for of (19) is the following (the

explicit computation of aF , ..., bF is not required)

uF,λ(x) = min

(
1

1− λF (x),
1

λ
(1− F (x))

)
, for all x. (20)

For a real random variable X with CDF FX , a quantile of order p ∈]0, 1[

is a real value κp where FX crosses or jumps over p, i.e., such that

lim
x↑κp

FX(x) ≤ p and FX(κp) ≥ p.

Given a simple sample x1, x2, ..., xN from a real random variable X, the
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(empirical) p-quantile κ̂p(N) is obtained by minimizing, with respect to κ,

the function

Sp,N (κ) = (1− p)
N∑
i=1
xi<κ

(κ− xi) + p
N∑
i=1
xi>κ

(xi − κ); (21)

furthermore,

κ̂p(N) = argmin
κ
Sp,N (κ)

is an unbiased estimate of κp.

According to Theorem 4 it is easy to deduce the following proposition.

Proposition 5 Let u ∈ RF have continuous membership function (1); let

Fu(x), x ∈ R be its 1
2 -ACF. Then for all α ∈]0, 1], the α-cuts [u

−
α , u

+
α ] of

u are such that u−α is the
α
2 -quantile of Fu(x) and u

+
α is the

α
2 -quantile of

F−u(x).

Proof. We have

Fu(x) =
1

2
uLext(x) +

1

2

(
1− uRext(x)

)
and, from equality F−u(x) = 1− Fu(−x),

F−u(x) =
1

2
uRext(−x) +

1

2

(
1− uLext(−x)

)
;

From the continuity of uLext(x) and u
R
ext(x) it follows that both Fu and F−u

are continuous and their inverses are quantile functions.

Let us consider the case where the membership function is given at a
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finite number of points, i.e. suppose that the fuzzy number u ∈ RF is

"measured" at N (independent) observations (ti, u(ti)); this is equivalent to

consider a set of independent variables X1, X2, ..., XN identically distributed

on the support [a, b] and to extract a simple sample of N distinct values ti

from each Xi, i = 1, 2, ..., N .

Consider the decomposition PN= {x1 < x2 < ... < xN} of the support

[a, b], obtained by ordering the ti such that t(1) < t(2)... < t(N) and defining

xi = t(i) for i = 1, 2..., N . The corresponding empirical AC function is

F̂PN (x) =
1

N

N∑
i=1

Î (x ≥ xi) (22)

where

Î (x ≥ xi) =

 1 if x ≥ xi

0 if x < xi

. (23)

For α ∈]0, 1], the α-cuts of u can be estimated by computing the em-

pirical α
2 -quantile of the sample data {xi|i : 1, ..., N} and the empirical

α
2 -quantile of the data {−xi|i : 1, ..., N}. To this issue, we have to minimize

the two empirical functions, as in eq. (21). The obtained values

κ−α (N) = argmin
κ
Sα
2
,N (κ) (24)

κ+α (N) = argmin
κ
S1−α

2
,N (κ) (25)

give an estimate [κ−α (N), κ
+
α (N)] of the α-cut [u

−
α , u

+
α ] of u and are obtained

without computing directly the (empirical) AC function from the data.

The Glivenko-Cantelli theorem ensures the convergence, for N →∞, of
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interval [κ−α (N), κ
+
α (N)] to the α−cut [u−α , u+α ].

In practical applications the assumption of continuity of Fu is not re-

strictive and it is a standard approach in statistics to estimate the quantiles

and the cumulative distribution function from empirical data.

It is also interesting to observe that, for fuzzy numbers, the same empir-

ical AC function can be associated to possibly several membership functions,

according to the value λ ∈]0, 1[ appearing in equations (19), (20). For ex-

ample, consider the linear ACF F (x) = x−a
b−a if x ∈ [a, b], F (x) = 0 if x < a,

F (x) = 1 if x > b (we can consider F as a "uniform" ACF). If we take λ = 1
2 ,

then the associated λ-membership function u0.5(x) gives the linear-shaped

triangular fuzzy number, usually represented by the triplet (a, a+b2 , b), with

core at c0.5 = a+b
2 and support [a, b]; if we take, e.g., λ = 3

4 , then the asso-

ciated u0.75(x) gives the triangular fuzzy number (a, a+b2 , b), with the same

support but core at c0.75 = 0.75a+ 0.25b. In general, then, before associat-

ing the membership to a uniform AC function, we have to chose the value

of λ; this is equivalent to chose the position of the core cλ = λa + (1 − λ)b

between a and b.

A similar reasoning can be applied to the case of a non-linear AC function

F on [a, b] by choosing the position of the core c ∈]a, b[ and by computing

the membership function according to (20) with the value λ = F (c).

3 Membership functions from empirical quantiles

Two questions are relevant to managing a membership function u empiric-

ally: (a) how to generate (independent) observations from u, and (b) how
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to estimate u from data.

3.1 Generating data from a given AC function

A natural way to generate observations from a fuzzy interval u ∈ RF with

α-cuts [u−α , u
+
α ], α ∈ [0, 1], is based on the application of the so called and

well known insuffi cient reason principle, (IRP for short, see Dubois-Prade

[11] and [12]): select a uniform sample of m α-cuts, corresponding to levels

α1 < α2 < ... < αm ∈ [0, 1] (eventually αk = k−1
m−1 , k = 1, 2, ...,m equispaced

between 0 and 1) and choose uniformly from each [u]αk = [u−αk , u
+
αk
] an

equal number of values tk,j ∈ [u]αk , j = 1, 2, ..., n ≥ 2, so that a matrix of

N = mn observations {tk,j |k = 1, ...,m; j = 1, ..., n} is obtained (eventually

values tk,j = u−αk +
j−1
n−1(u

+
αk
− u−αk), equally spaced on each [u]αk).

Suppose for simplicity that the values tk,j are all distinct. Let us organize

the matrix tk,j (for example by rows) into a vector t̂i, i = 1, 2, ..., N and

denote by t̂(i) the ascending ordered element in i-th position with t̂(i+1) >

t̂(i), i = 1, ..., N − 1.

The corresponding empirical AC function of the data set is obtained by

setting xi = t̂(i), i = 1, ..., N and, for x ∈ R,

F̂{tk,j}(x) =
1

N

N∑
i=1

Î(x ≥ xi). (26)

We have the following obvious property.

Proposition 6 The empirical AC function F̂{tk,j}(x) is such that

lim
n,m→∞

sup
∣∣∣F̂{tk,j}(x)− Fu(x)∣∣∣ = 0
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where Fu(x) is the AC function of u.

Proof. It is suffi cient to apply Proposition 25 in [29].

By the uniform construction of {tk,j} from the m α-cuts [u]αk we can

see that the probability of xi ∈ [u]αk does not depend on n, the number of

elements taken from each α-cut. Indeed, letting [a, b] the support and [c, d]

the core of u, denote the lengths of the intervals δ1 = u+α1 − u
−
α1 = b − a,

δk = u+αk − u
−
αk
and δm = u+αm − u−αm = d − c, the nesting property of the

α-cuts ensures that xi ∈ [u]αk+1 =⇒ xi ∈ [u]αk and all xi belong to [u]α1
(the support); on the other hand, by uniformity, the number of elements

xi in [u]αj and not in [u]αj+1 , for fixed j, is the proportion
δj−δj+1

δj
of the

difference of lengths of the two intervals. We then have

Pr{xi ∈ [u]αk} =
1

N

n(m− k + 1) + n k−1∑
j=1

δj − δj+1
δj



=
1

m

m− k + 1 + k − 1 + k−1∑
j=1

δj+1
δj

 =
1

m

m+ k−1∑
j=1

δj+1
δj


= 1− 1

m

k−1∑
j=1

δj+1
δj
.

The last expression does not depend on n but only on the number m of

α-cuts and on the lengths of the intervals [u]αk = [u
−
αk
, u+αk ].

It is also possible to see that the statistical modal value belongs (or

coincides with it, if c = d) to the core of u; furthermore, the modal value

and the median of the data set, under the IRP condition, will also coincide.
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Assume that the core [c, d] is not a singleton, i.e. that δm > 0; eventually,

if c = d the n data values corresponding to the core are generated uniformly

from a neighbor [c−ε, c+ε] with a small ε > 0 and, in this case, δm = 2ε > 0.

Lets now consider a histogram with p uniform classes C1, C2, ..., Cp, obtained

from the data set {xi|i = 1, ..., N}; each class has length b−a
p and is an

interval Cl =
[
a+ l−1

p (b− a), a+
l
p(b− a)

]
, l = 1, 2, ..., p. It is not diffi cult

to determine the composition of each class Cl, i.e. to compute the probability

that xi ∈ Cl. Clearly, it will depend on the position of the class with

respect to each α-cut [u]αk , k = 1, ...,m. Denote Il,k = Cl ∩ [u]αk and let

δ̂l,k = length(Il,k) ≤ b−a
p (set δ̂l,k = 0 if Il,k is empty); then, the proportion

of elements tk,j , j = 1, ..., n, from the interval [u]αk that belong to Cl will

be the ratio δ̂l,k
δk
and we have

Pr{xi ∈ Cl} =
n

N

m∑
k=1

δ̂l,k
δk

=
1

m

m∑
k=1

δ̂l,k
δk
≤ b− a

p

1

m

m∑
k=1
Il,k 6=∅

1

δk

i.e., each class has a number of elements proportional to the average ratio

of the length of its intersection with each α-cut to the length of the α-cut

itself. As a consequence, the highest probability corresponds to a class which

intersects the core of u, denote it by C
l̂
; by the nesting property of the α-cuts

and by the uniformity of the tk,j with respect to each [u]αk , it also follows

that the proportion of elements xi located on the left (before) the modal

class is the same as after the modal class, with the consequence that the

modal value coincides with the median of the data set {xi|i = 1, ..., N}.

In the special case of n = 2, i.e., to each α-cut two elements ti,1, ti,2 are

generated for all i = 1, ...,m, we can deduce a procedure to generate a (ran-
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dom) sample from a fuzzy number u with a singleton core {c}, support [a, b]

and continuous AC function Fu: let αi bem (independent) random numbers

generated between 0 and 1, determine tk,1 = F−1u (αk2 ), tk,2 = F−1u (1 − αk
2 )

and set x2k−1 = tk,1, x2k = tk,2 for k = 1, ...,m (a set of N = 2m values),

where F−1(α) = inf{a|F (x) ≥ α} is the generalized inverse of F .

If we chose n = 1, i.e., to each α-cut only one element xi is selected for all

i = 1, ...,m, we can generate a (random) sample of values x1, x2, ...xm ∈ [a, b]

from u: let αi be (independent) random numbers generated between 0 and

1 and determine xi as

xi =

 F−1u (αi2 ) with probability 1
2

F−1u (1− αi
2 ) with probability 1

2

, i = 1, ...,m. (27)

A Glivenko-Cantelli-like theorem (see [29]) ensures that, form→∞, the

empirical cumulative distribution function of the data set {xi|i = 1, ...,m},

given in (26) with n = 1, converges almost surely and uniformly to Fu.

In equation (27), the quantile function is used under the assumption that

the core of u corresponds to λ = 1
2 , i.e., if Fu is the

1
2 -ACF of u. A similar

result is also valid if Fu is assumed to be the λ-ACF of u with λ ∈]0, 1[; in

this case, we substitute equation (27) with the following

xi =

 F−1u (λαi) with probability 1
2

F−1u (1− λαi) with probability 1
2

, i = 1, ...,m. (28)

Example 1. Consider two fuzzy numbers X and Y (X with linear

shaped membership function), as in Figure 1. We have generated, according

to the rule expressed in (27), i.e., assuming λ = 0.5, two samples of size
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m = 100 and m = 500; in this case we know exactly the position of the core

of X and Y (1.0 and 2.0, respectively), so we do not face the problem with

their location.

Figure 1: Membership function (MF) and 1
2 -Average Cumulative function

(ACF) of fuzzy numbers X and Y as in Example 1.

In Figure 2, a sample of m = 100 data is extracted from the two fuzzy

numbers and the membership function is reconstructed from the empirical

AC function with λ = 1
2 . The resulting percentage relative error between

exact and estimated AC functions is 0.40% for X and 0.59% for Y . Remark

that in this case a small portion on left and right of the support of X and

Y is not covered completely (in particular, the right side of X).

In Figure 3, the sample has m = 500 points and the AC function is

estimated empirically. The resulting percentage relative error between exact
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Figure 2: Empirical (m = 100) and estimated Membership function (MF)
and Average Cumulative function (ACF) of fuzzy numbers X and Y, as in
Example 2.

and estimated AC functions is 0.34% for X and 0.52% for Y . In this case,

the covering of the supports of X and Y is more satisfactory than for the

previous smaller sample.

3.2 Estimating a membership function from empirical data

As we have mentioned, the λ-AC function (ACF) of a fuzzy number u ∈ RF ,

in the continuous case, has the same properties of a cumulative distribution

function (CDF) of a (real) random variableX, defined on the same (support)

domain. This gives an interesting (formal) similarity between probability

and possibility as, at least in principle, we can examine the same function
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Figure 3: Empirical (m = 500) and estimated Membership function (MF)
and Average Cumulative function (ACF) of fuzzy numbers X and Y, as in
Example 2.

by combining the two settings, as we did in section 3.1, to simulate data

from the possibility distribution. If we work with fuzzy numbers, we can

perform all the operations in terms of the corresponding λ-AC functions (see

also papers by G. De Cooman, in particular [7]).

Clearly, the information about how the sample is extracted, becomes

crucial when considering the empirical Fu: the connection between Fu, in-

terpreted as a quantile function, and the underlying fuzzy membership u

corresponds to the value λ = 1
2 . On the other hand, starting with a given

ACF, we can apply Theorem 4 to reconstruct the membership function u

(or its α-cuts) only if the value of λ ∈]0, 1[ is preliminarily decided; we know
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indeed that, in general, λ = 1
2 corresponds to the core of u only when it is

coincident with the empirical median.

In the cases where we do not have such precise information, we face a

situation where other values of λ ∈]0, 1[ can be used, according to equation

(15), and we have to chose an appropriate value of λ, which corresponds

to a particular choice of the position of the core of u. By choosing λ = 1
2 ,

we continue to assume that the core coincides with the median; on the

other hand, if we assume that the core c = c∗ corresponds to a different

value of λ = λ∗, the following equality holds: F (c∗) = 1 − λ∗, equivalently

c∗ = F−1(1− λ∗) and λ∗ = 1− F (c∗).

This is the rule (coherent with Theorem 4) to determine from the AC

function either the location c∗ of the core if λ = λ∗ is fixed, or the value of

λ if the core c = c∗ is fixed.

We suggest the following procedure to obtain a membership function

û(x) from an empirical AC function F̂ (x).

Procedure eACMF: Estimation of AC and membership functions from

a data set.

Step 1 (Initialization): LetX = {x1, x2, ..., xm} be the available sample of val-

ues with the corresponding relative frequencies {p1, p2, ..., pm} (even-

tually, pj = 1
m for all j); let a = min{xj} − ε, b = max{xj} + ε, for

some positive ε, be the support of û(x).

Step 2: Construct the empirical AC function as FX(x) =
m∑
j=1

pj Î(x ≥ xj)

where Î(x ≥ xj) = 1 if x ≥ xj ; = 0 otherwise.

Step 3: Determine the central value c∗ ∈]a, b[ to be considered as the core of
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the fuzzy number û, e.g., c∗ = median{xj}, or c∗ = mode{xj} (if the

data are uni-modal), or c∗ = mean{xj}.

Step 4: From the empirical AC function FX(x) compute FX(c∗), e.g. by in-

terpolation, and set λ∗ = 1 − FX(c∗); if c∗ = median{xj}, then set

λ∗ = 0.5; the empirical membership function of û at the points xj ∈ X

is uX(xj) = min
{

1
1−λFX(xj),

1
λ (1− FX(xj))

}
.

Step 5: From the empirical AC function construct, by some approximation, an

estimated AC function F̂ (x), x ∈ [a, b].

Step 6: Use the estimated AC function F̂ (x) obtained in Step 5 to compute the

membership function û as û(x) = min
{

1
1−λ∗ F̂ (xj),

1
λ∗

(
1− F̂ (x)

)}
,

x ∈ [a, b].

In the next two examples, we apply formula (27) to a pair of fuzzy setsX,

Y by comparing the construction of the membership functions corresponding

to three cases: 1) the core c coincides with the median of the distribution;

2) the core c is the mode (assuming uni-modality); 3) the core c is the mean

of the data.

Example 2: A sample of m = 250 data for two fuzzy numbers X, Y are

generated from the same AC functions as in Example 1, but this time the

xi and yi are perturbed by adding a normal random number generated from

N(0, σ2) with σ = 0.3. The obtained AC functions are pictured in Figure 4;

remark that the median of X and Y are essentially preserved.

Considering that the AC functions are monotone, we have used the

method in [5] to obtain their best (smooth) monotonic approximation.
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Figure 4: The ACFs of numbers X ad Y are represented, following hypothesis
in Example 2.
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From the data set, the cores c∗X and c
∗
Y are estimated from the empirical

median, mode and mean of X and Y ; they are reported in Table 1, with

the corresponding values of λ∗, obtained from the empirical AC functions

by linear interpolation.

Table 1: Median, mode, mean and corresponding λ∗ values for Example 2

Data 1) Median 2) Mode 3) Mean

X c∗X = 1.01, λ
∗ = 0.5 c∗X = 0.69, λ

∗ = 0.68 c∗X = 1.22, λ
∗ = 0.45

Y c∗Y = 2.01, λ
∗ = 0.5 c∗Y = 2.83, λ

∗ = 0.30 c∗Y = 1.75, λ
∗ = 0.54

The empirical and estimated AC functions of X and Y do not change for

the three cases; instead, the membership functions, estimated according to

Procedure eACMF corresponding to the appropriate values of λ∗ (see Table

1) are quite different in the three cases.

Figure 5 reproduces the situation where the core of X and Y coincide

with the median of ACFs; they are similar, considering that the data are

perturbed, to the ACFs and to the membership functions reproduced in

Figure 4.

When the core is made coincident with the mode (Figure 6) or the mean

(Figure 7), then the membership functions change significantly their posi-

tion and shape (in particular, when the empirical ACFs exhibit some non-

linearity).

Example 3: In this case, the two variables X, Y represent two proper-

ties (variables) from a sub-sample of the quakes data set, available in the

R-language Package datasets (version 3.6.0). X and Y are the (rescaled)

latitude and longitude from a cluster of m = 795 seismic events having loc-
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Figure 5: Empirical (m = 250) and estimated MF and ACF of fuzzy numbers
X and Y, as in Example 2, assuming the core coincident with the median;
the horizontal dashed lines correspond to values of λ∗.

ations in a cube near Fiji (frequently used to test clustering procedures).

The empirical median, mode and mean of X and Y are given in Table 2.

Table 2: Median, mode, mean and corresponding λ∗ values for Example 3

Data 1) Median 2) Mode 3) Mean

X c∗X = −0.33, λ∗ = 0.5 c∗X = 0.64, λ
∗ = 0.38 c∗X = −1.23, λ∗ = 0.59

Y c∗Y = 2.42, λ
∗ = 0.5 c∗Y = 2.07, λ

∗ = 0.59 c∗Y = 2.89, λ
∗ = 0.42

The empirical AC functions of X and Y are pictured in Figure 8.

The estimated ACFs and the corresponding membership functions, ob-

tained according to Procedure eACMF for the three cases, are shown in

Figure 9 for the median, Figure 10 for the mode and Figure 11 for the
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Figure 6: Empirical (m = 250) and estimated MF and ACF of fuzzy numbers
X and Y, as in Example 2, assuming the core coincident with the mode;
the horizontal dashed lines correspond to values of λ∗.

mean.

Also for Example 3, the smooth monotonic approximations of the ACFs

are obtained by the method described in [5]. We can remark that, in this

example, the membership functions for the three cases exhibit similar forms

(in particular for Y ), due essentially to the fact that, with respect to the

relatively large supports, the values of median, mode and mean are not so

different as it is in Example 2.
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Figure 7: Empirical (m = 250) and estimated MF and ACF of fuzzy numbers
X and Y, as in Example 2, assuming the core coincident with the mean;
the horizontal dashed lines correspond to values of λ∗.

4 Conclusions and further research

The AC function Fu associated to a (normal, convex) fuzzy number u ∈ RF

creates a bridge with possibility theory and allows a setting to work with

empirical observations. As we have seen in section 3, under the assumptions

that

(a) data are generated according to an underlining membership function,

and

(b) we have a precise information about the location of the core,

we can apply Theorem 4 to obtain an estimated function û ∈ RF from the

empirical (monotonic) AC function F̂ , assuming that the value λ∗ ∈]0, 1[ is

28



Figure 8: Empirical (m = 795) Average Cumulative functions of X and Y
from the quakes dataset, as in Example 3.

fixed. On the other hand, the selection of λ∗ cannot be deduced directly

from the data set without a precise (at least qualitative) assumption.

A natural choice, having a valid statistical justification, is to determine

λ∗ such that the core of u coincides with the median of observed values.

In this case, we know that the α-cuts of u coincide with the α
2 -quantile

intervals; but other possible values can be determined, e.g., by the help of

depth functions (see, [26], [1], [23]), or by analyzing the order structure of

the data set.
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Figure 9: Empirical (m = 795) and estimated MF and ACF of fuzzy num-
bers X and Y , as in Example 3 when the core coincides with the median;
horizontal dashed lines correspond to the values of λ∗.

4.1 Open problems

The choice of an appropriate meaningful value of λ∗ still remains an essen-

tially open question, even if median, mode or mean values seems to merit

special attention.

A second open question concerns the cases when (ordered) data are not

able to evidence a unique central value, for example if the observations can

be clustered into subsets around reasonably identified centroids; in these

situations, we may have distinct fuzzy sets to identify and the use of clus-

tering techniques can be of help to preliminarily subdivide the data into

a number of sub-samples each giving a membership function with reduced
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Figure 10: Empirical (m = 795) and estimated MF and ACF of fuzzy num-
bers X and Y , as in Example 3 when the core coincides with the modal
value; horizontal dashed lines correspond to the values of λ∗.

supports.

4.2 Further research

Some additional research will also involve computational issues, in order to

improve the empirical applicability of the proposed ideas. In particular, we

have planned some work to address

• the generation of random fuzzy intervals (or random possibility distri-

butions) via AC functions and the search for possible metrics on ACFs

that focus on useful topological structures (see for example [27] and

[30]);
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Figure 11: Empirical (m = 795) and estimated MF and ACF of fuzzy num-
bers X and Y , as in Example 3 when the core coincides with the mean;
horizontal dashed lines correspond to the values of λ∗.

• the search for general and flexible procedures for robust approximation

of ACFs from empirical data: indeed, the ACF-representation based

on monotonic functions eases the search of approximation methods and

algorithms, as is done in [5] by the use of F-transform. We remark that

a similar procedure can be applied to the estimation of density and

distribution functions of random variables;

• the identification of multiple membership functions with possibly over-

lapping supports, as in the case where observed data are obtained from

mixtures of possibility distributions, e.g., as unions of fuzzy sets;

• the extension of a similar construction to the multi-dimensional case,
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using ideas from statistical or geometrical cluster analysis (including

fuzzy clustering as, e.g., in ), related to multi-dimensional depth func-

tions, copulas (or more general functions) to represent multidimen-

sional fuzzy quantities and associated AC functions, with or without

the convexity requirement.
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