Gene-regulatory networks reconstruction has become a very popular approach in applied biology to infer and dissect functional interactions of Transcription Factors (TFs) driving a defined phenotypic state, termed as Master Regulators (MRs). In the present work, cutting-edge bioinformatic methods were applied to re-analyze experimental data on leukemia cells (human myelogenous leukemia cell line THP-1 and acute myeloid leukemia MOLM-13 cells) treated for 6 h with two different Ribosome-Inactivating Proteins (RIPs), namely Shiga toxin type 1 (400 ng/mL) produced by Escherichia coli strains and the plant toxin stenodactylin (60 ng/mL), purified from the caudex of Adenia stenodactyla Harms. This analysis allowed us to identify the common early transcriptional response to 28S rRNA damage based on gene-regulatory network inference and Master Regulator Analysis (MRA). Both toxins induce a common response at 6 h which involves inflammatory mediators triggered by AP-1 family transcriptional factors and ATF3 in leukemia cells. We describe for the first time the involvement of MAFF, KLF2 and KLF6 in regulating RIP-induced apoptotic cell death, while receptor-mediated downstream signaling through ANXA1 and TLR4 is suggested for both toxins.

Mercatelli D., Bortolotti M., Giorgi F.M. (2020). Transcriptional network inference and master regulator analysis of the response to ribosome-inactivating proteins in leukemia cells. TOXICOLOGY, 441, 1-9 [10.1016/j.tox.2020.152531].

Transcriptional network inference and master regulator analysis of the response to ribosome-inactivating proteins in leukemia cells

Mercatelli D.
Conceptualization
;
Bortolotti M.
Investigation
;
Giorgi F. M.
Writing – Review & Editing
2020

Abstract

Gene-regulatory networks reconstruction has become a very popular approach in applied biology to infer and dissect functional interactions of Transcription Factors (TFs) driving a defined phenotypic state, termed as Master Regulators (MRs). In the present work, cutting-edge bioinformatic methods were applied to re-analyze experimental data on leukemia cells (human myelogenous leukemia cell line THP-1 and acute myeloid leukemia MOLM-13 cells) treated for 6 h with two different Ribosome-Inactivating Proteins (RIPs), namely Shiga toxin type 1 (400 ng/mL) produced by Escherichia coli strains and the plant toxin stenodactylin (60 ng/mL), purified from the caudex of Adenia stenodactyla Harms. This analysis allowed us to identify the common early transcriptional response to 28S rRNA damage based on gene-regulatory network inference and Master Regulator Analysis (MRA). Both toxins induce a common response at 6 h which involves inflammatory mediators triggered by AP-1 family transcriptional factors and ATF3 in leukemia cells. We describe for the first time the involvement of MAFF, KLF2 and KLF6 in regulating RIP-induced apoptotic cell death, while receptor-mediated downstream signaling through ANXA1 and TLR4 is suggested for both toxins.
2020
Mercatelli D., Bortolotti M., Giorgi F.M. (2020). Transcriptional network inference and master regulator analysis of the response to ribosome-inactivating proteins in leukemia cells. TOXICOLOGY, 441, 1-9 [10.1016/j.tox.2020.152531].
Mercatelli D.; Bortolotti M.; Giorgi F.M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/764508
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact