The evidences of the influence of climate change (CC) in most of the key sectors of human activities are frequently reported by the news and media with increasing concern. The building sector, and particularly energy use in the residential sector, represents a crucial field of investigation as demonstrated by specific scientific literature. The paper reports a study on building energy consumption and the related effect on indoor thermal comfort considering the impacts of the Intergovernmental Panel on Climate Change (IPCC) 2018 report about temperature increase projection. The research includes a case study in New York City, assuming three different scenarios. The outcomes evidence a decrease in energy demand for heating and an increase in energy demand for cooling, with a relevant shift due to the summer period temperature variations. The challenge of the last decades for sustainable design was to increase insulation for improving thermal behavior, highly reducing the energy demand during winter time, however, the projections over the next decades suggest that the summer regime will represent a future and major challenge in order to reduce overheating and ensure comfortable (or at least acceptable) living conditions inside buildings. The growing request of energy for cooling is generating increasing pressure on the supply system with peaks in the case of extreme events that lead to the grid collapse and to massive blackouts in several cities. This is usually tackled by strengthening the energy infrastructure, however, the users’ behavior and lifestyle will strongly influence the system capacity in stress conditions. This study focuses on the understanding of these phenomena and particularly on the relevance of the users’ perception of indoor comfort, assuming the IPCC projections as the basis for a future scenario.

Climate Change Effect on Building Performance: A Case Study in New York

Kristian Fabbri;Jacopo Gaspari;Licia Felicioni
2020

Abstract

The evidences of the influence of climate change (CC) in most of the key sectors of human activities are frequently reported by the news and media with increasing concern. The building sector, and particularly energy use in the residential sector, represents a crucial field of investigation as demonstrated by specific scientific literature. The paper reports a study on building energy consumption and the related effect on indoor thermal comfort considering the impacts of the Intergovernmental Panel on Climate Change (IPCC) 2018 report about temperature increase projection. The research includes a case study in New York City, assuming three different scenarios. The outcomes evidence a decrease in energy demand for heating and an increase in energy demand for cooling, with a relevant shift due to the summer period temperature variations. The challenge of the last decades for sustainable design was to increase insulation for improving thermal behavior, highly reducing the energy demand during winter time, however, the projections over the next decades suggest that the summer regime will represent a future and major challenge in order to reduce overheating and ensure comfortable (or at least acceptable) living conditions inside buildings. The growing request of energy for cooling is generating increasing pressure on the supply system with peaks in the case of extreme events that lead to the grid collapse and to massive blackouts in several cities. This is usually tackled by strengthening the energy infrastructure, however, the users’ behavior and lifestyle will strongly influence the system capacity in stress conditions. This study focuses on the understanding of these phenomena and particularly on the relevance of the users’ perception of indoor comfort, assuming the IPCC projections as the basis for a future scenario.
Kristian Fabbri; Jacopo Gaspari; Licia Felicioni
File in questo prodotto:
File Dimensione Formato  
energies-13-03160.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.55 MB
Formato Adobe PDF
1.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/762477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact