Potential gene flow from transgenic Brassica napus to widely-distributed, cross-compatible weedy relatives has received significant attention. All previous, albeit scarce, research has shown little to no success in producing viable F1 hybrids between B. napus (n = 38) and B. nigra (n = 16). The present study tested the working premise that the propensity for interspecific hybridization is significantly higher between B. napus and wild-growing, B. nigra displaying mixoploidy (n = 32). Controlled hybridization was performed using local, wild-growing B. nigra (♀) x transgenic (Bt Cry1Ac) B. napus (♂). Spontaneous hybridization was performed using the same B. nigra (♀) population x non-transgenic B. napus (♂) under sympatric open-field and greenhouse conditions. The total hybridization frequency, determined by the functional expression of the Bt Cry1Ac endotoxin, was 1.8 % of the F1 hybrids (n = 35). Gene flow from non-transgenic B. napus to B. nigra ranged from 4 to 29 % in F1 hybrids, with combined wind- and wild-insect-mediated pollen dispersal being the most effective. Successful interspecific hybridization is significantly enhanced using mixoploid B. nigra progenitor material. Gene flow rates in F1 hybrids were equivalent to those previously reported between B. napus with B. rapa and B. juncea, respectively, which are at the forefront of risk assessment concerns.

Marotti, I., Whittaker, A., Benedettelli, S., Dinelli, G., Bosi, S. (2020). Evaluation of the propensity of interspecific hybridization between oilseed rape (Brassica napus L.) to wild-growing black mustard (Brassica nigra L.) displaying mixoploidy. PLANT SCIENCE, 296(July 2020), 1-9 [10.1016/j.plantsci.2020.110493].

Evaluation of the propensity of interspecific hybridization between oilseed rape (Brassica napus L.) to wild-growing black mustard (Brassica nigra L.) displaying mixoploidy

Ilaria Marotti
;
Anne Whittaker;Giovanni Dinelli;Sara Bosi
2020

Abstract

Potential gene flow from transgenic Brassica napus to widely-distributed, cross-compatible weedy relatives has received significant attention. All previous, albeit scarce, research has shown little to no success in producing viable F1 hybrids between B. napus (n = 38) and B. nigra (n = 16). The present study tested the working premise that the propensity for interspecific hybridization is significantly higher between B. napus and wild-growing, B. nigra displaying mixoploidy (n = 32). Controlled hybridization was performed using local, wild-growing B. nigra (♀) x transgenic (Bt Cry1Ac) B. napus (♂). Spontaneous hybridization was performed using the same B. nigra (♀) population x non-transgenic B. napus (♂) under sympatric open-field and greenhouse conditions. The total hybridization frequency, determined by the functional expression of the Bt Cry1Ac endotoxin, was 1.8 % of the F1 hybrids (n = 35). Gene flow from non-transgenic B. napus to B. nigra ranged from 4 to 29 % in F1 hybrids, with combined wind- and wild-insect-mediated pollen dispersal being the most effective. Successful interspecific hybridization is significantly enhanced using mixoploid B. nigra progenitor material. Gene flow rates in F1 hybrids were equivalent to those previously reported between B. napus with B. rapa and B. juncea, respectively, which are at the forefront of risk assessment concerns.
2020
Marotti, I., Whittaker, A., Benedettelli, S., Dinelli, G., Bosi, S. (2020). Evaluation of the propensity of interspecific hybridization between oilseed rape (Brassica napus L.) to wild-growing black mustard (Brassica nigra L.) displaying mixoploidy. PLANT SCIENCE, 296(July 2020), 1-9 [10.1016/j.plantsci.2020.110493].
Marotti, Ilaria; Whittaker, Anne; Benedettelli, Stefano; Dinelli, Giovanni; Bosi, Sara
File in questo prodotto:
File Dimensione Formato  
Evaluation of the propensity of interspecific hybridization AAM.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 437.94 kB
Formato Adobe PDF
437.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/758791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact