Potential gene flow from transgenic Brassica napus to widely-distributed, cross-compatible weedy relatives has received significant attention. All previous, albeit scarce, research has shown little to no success in producing viable F1 hybrids between B. napus (n = 38) and B. nigra (n = 16). The present study tested the working premise that the propensity for interspecific hybridization is significantly higher between B. napus and wild-growing, B. nigra displaying mixoploidy (n = 32). Controlled hybridization was performed using local, wild-growing B. nigra (♀) x transgenic (Bt Cry1Ac) B. napus (♂). Spontaneous hybridization was performed using the same B. nigra (♀) population x non-transgenic B. napus (♂) under sympatric open-field and greenhouse conditions. The total hybridization frequency, determined by the functional expression of the Bt Cry1Ac endotoxin, was 1.8 % of the F1 hybrids (n = 35). Gene flow from non-transgenic B. napus to B. nigra ranged from 4 to 29 % in F1 hybrids, with combined wind- and wild-insect-mediated pollen dispersal being the most effective. Successful interspecific hybridization is significantly enhanced using mixoploid B. nigra progenitor material. Gene flow rates in F1 hybrids were equivalent to those previously reported between B. napus with B. rapa and B. juncea, respectively, which are at the forefront of risk assessment concerns.
Ilaria Marotti, Anne Whittaker, Stefano Benedettelli, Giovanni Dinelli, Sara Bosi (2020). Evaluation of the propensity of interspecific hybridization between oilseed rape (Brassica napus L.) to wild-growing black mustard (Brassica nigra L.) displaying mixoploidy. PLANT SCIENCE, 296, 1-9 [10.1016/j.plantsci.2020.110493].
Evaluation of the propensity of interspecific hybridization between oilseed rape (Brassica napus L.) to wild-growing black mustard (Brassica nigra L.) displaying mixoploidy
Ilaria Marotti
;Anne Whittaker;Giovanni Dinelli;Sara Bosi
2020
Abstract
Potential gene flow from transgenic Brassica napus to widely-distributed, cross-compatible weedy relatives has received significant attention. All previous, albeit scarce, research has shown little to no success in producing viable F1 hybrids between B. napus (n = 38) and B. nigra (n = 16). The present study tested the working premise that the propensity for interspecific hybridization is significantly higher between B. napus and wild-growing, B. nigra displaying mixoploidy (n = 32). Controlled hybridization was performed using local, wild-growing B. nigra (♀) x transgenic (Bt Cry1Ac) B. napus (♂). Spontaneous hybridization was performed using the same B. nigra (♀) population x non-transgenic B. napus (♂) under sympatric open-field and greenhouse conditions. The total hybridization frequency, determined by the functional expression of the Bt Cry1Ac endotoxin, was 1.8 % of the F1 hybrids (n = 35). Gene flow from non-transgenic B. napus to B. nigra ranged from 4 to 29 % in F1 hybrids, with combined wind- and wild-insect-mediated pollen dispersal being the most effective. Successful interspecific hybridization is significantly enhanced using mixoploid B. nigra progenitor material. Gene flow rates in F1 hybrids were equivalent to those previously reported between B. napus with B. rapa and B. juncea, respectively, which are at the forefront of risk assessment concerns.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.