In this paper, we prove interior Poincaré and Sobolev inequalities in Euclidean spaces and in Heisenberg groups, in the limiting case where the exterior (resp. Rumin) differential of a differential form is measured in L1 norm. Unlike for Lp, p>1, the estimates are doomed to fail in top degree. The singular integral estimates are replaced with inequalities which go back to Bourgain-Brezis in Euclidean spaces, and to Chanillo-Van Schaftingen in Heisenberg groups.
L1-Poincaré inequalities for differential forms on Euclidean spaces and Heisenberg groups
Baldi A.;Franchi B.
;
2020
Abstract
In this paper, we prove interior Poincaré and Sobolev inequalities in Euclidean spaces and in Heisenberg groups, in the limiting case where the exterior (resp. Rumin) differential of a differential form is measured in L1 norm. Unlike for Lp, p>1, the estimates are doomed to fail in top degree. The singular integral estimates are replaced with inequalities which go back to Bourgain-Brezis in Euclidean spaces, and to Chanillo-Van Schaftingen in Heisenberg groups.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BFP3_final_revised.pdf
Open Access dal 27/02/2022
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
666.48 kB
Formato
Adobe PDF
|
666.48 kB | Adobe PDF | Visualizza/Apri |
BFP_preprint.pdf
accesso aperto
Tipo:
Preprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
487.83 kB
Formato
Adobe PDF
|
487.83 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.