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L1-POINCARÉ INEQUALITIES FOR DIFFERENTIAL FORMS ON

EUCLIDEAN SPACES AND HEISENBERG GROUPS

ANNALISA BALDI
BRUNO FRANCHI
PIERRE PANSU

Abstract. In this paper, we prove interior Poincaré and Sobolev inequalities
in Euclidean spaces and in Heisenberg groups, in the limiting case where the
exterior (resp. Rumin) differential of a differential form is measured in L1

norm. Unlike for Lp, p > 1, the estimates are doomed to fail in top degree.
The singular integral estimates are replaced with inequalities which go back
to Bourgain-Brezis in Euclidean spaces, and to Chanillo-van Schaftingen in
Heisenberg groups.

1. Introduction

1.1. L1-Sobolev and Poincaré inequalities. The well known Sobolev inequali-
ties on Rn states that for every 1 ≤ p < n, there exists a constant C(n, p) such that
all smooth compactly supported functions u on Rn satisfy

‖u‖q ≤ C(n, p) ‖∇u‖p provided
1

p
−

1

q
=

1

n
(p−Sobolev).

The most important of these inequalities is (1−Sobolev). Indeed, (1−Sobolev)
implies all inequalities (p−Sobolev), p < n. Furthermore, (1−Sobolev) is equivalent
to the isoperimetric inequality for smooth bounded domains A of Rn (Federer-
Fleming’s theorem, [15]),

volume(A)(n−1)/n ≤ C(n, 1) area(∂A),

(with the same constant). Similarly, for noncompactly supported functions, a
Poincaré inequality holds for 1 ≤ p < n: there exists a constant cu such that

‖u− cu‖q ≤ C(n, p) ‖∇u‖p provided
1

p
−

1

q
=

1

n
(p−Poincaré).

We investigate generalizations of these inequalities to differential forms. More
precisely, we ask whether, given a closed differential h-form ω in Lp(Rn), there
exists an (h− 1)-form φ in Lq(Rn) with 1

p − 1
q = 1

n such that dφ = ω and

‖φ‖q ≤ C(n, p, h) ‖ω‖p.

If p > 1, the easy proof consists in putting φ = d∗∆−1ω. Here, ∆−1 denotes the
inverse of the Hodge Laplacian ∆ = d∗d + dd∗ and d∗ is the formal L2-adjoint of
d. The operator d∗∆−1 is given by convolution with a homogeneous kernel of type
1 in the terminology of [16] and [17], hence it is bounded from Lp to Lq if p > 1.
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Unfortunately, this argument does not suffice for p = 1 since, by [17], Theorem 6.10,
d∗∆−1 maps L1 only into the weak Marcinkiewicz space Ln/(n−1),∞. Upgrading
from Ln/(n−1),∞ to Ln/(n−1) is possible for functions. Indeed, for characteristic
functions of sets, the Ln/(n−1),∞ and Ln/(n−1) norms coincide, and every function
is the sum of characteristic functions of its superlevel sets (see [27], [18], [19]).

This trick does not seem to generalize to differential forms.
Note that locally, d∗∆−1 maps L1 to Lq for all q < n/(n− 1), but this does not

lead to a scale invariant inequality.

1.2. Analysis of L1-differential forms. In fact, (1−Poincaré) fails in degree n.
There is an obvious obstruction: n-forms belonging to L1 and with nonvanishing
integral cannot be differentials of Ln/(n−1) forms, see [43]. But even if integral
vanishes, a primitive φ such that ‖φ‖q ≤ C ‖ω‖1 need not exist, with 1 − 1

q = 1
n .

Indeed, if so, then, for every smooth function u on Rn, one could write, for every
n-form ω ∈ L1 with vanishing integral,

|

∫

uω| = |

∫

u dφ| = |du ∧ φ| ≤ ‖du‖n‖φ‖q ≤ C ‖du‖n‖ω‖1,

which would imply (by Hahn-Banach theorem) the existence of a constant cu such
that ‖u−cu‖∞ ≤ C ‖du‖n. Such a (n−Sobolev) inequality does not hold, since Rn is
n-parabolic, i.e. for every compact subset K and every ǫ > 0, there exists a smooth
compactly supported function χ on Rn such that χ ≥ 1 on K and

∫

Rn |dχ|n < ǫ,
(see [14] Section 4.7).

Surprisingly, Poincaré and Sobolev inequalities persist sometimes for p = 1. The

first result appeared in [10], whose Theorem 2 states that, if ~f is a divergence free

vectorfield in L1(Rn), then the solution of ∆~u = ~f satisfies ∇~u ∈ Ln/(n−1). In
differential form notation, this means that ∇∆−1 restricted to closed (n− 1)-forms
is bounded from L1 to Ln/(n−1). A fortiori, so is d∗∆−1, this proves (1−Poincaré)
in degree n− 1.

1.3. Results. In this paper, we prove (1−Poincaré) for h-forms of degree h < n in
de Rham’s complex (Ω•, d). We rely on Lanzani-Stein’s observation (see [26]) that
the duality estimate (emphasized by van Schaftingen [44]) underlying Bourgain-
Brezis’ result descends from (n−1)-forms to forms of lower degree, and the resulting
Gagliardo-Nirenberg inequalities.

Remarkably, this approach generalizes to the non-commutative Heisenberg groups
Hn equipped with Rumin’s complex (E•

0 , dc). Indeed, when passing to Heisenberg
groups, we can use Lanzani-Stein’s type arguments proved in [2], [5]. Precise defi-
nitions of Heisenberg groups and related properties as well as of Rumin’s complex,
can be found in Section 4.

In the Euclidean setting, the integral obstruction generalizes to forms in every
degree: if a closed L1-form ω is the differential of a form in Ln/(n−1)(Rn), then for
every constant coefficient form β of complementary degree,

∫

ω ∧ β = 0. Therefore
we introduce the subspace L1

0 of L
1-differential forms satisfying these conditions (we

call them forms with vanishing averages). In Heisenberg groups, constant coefficient
forms must be replaced with left-invariant Rumin forms.

We can state our main results. We stress that, in (1) below we are dealing with
usual de Rham forms, whereas in (2) we are dealing with Rumin’s complex.

Theorem 1.1 (Global Poincaré and Sobolev inequalities). We have:
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(1) Euclidean case Rn. Let h = 1, . . . , n− 1 and set q = n/(n− 1). For every
closed h-form α ∈ L1

0(R
n), there exists an (h − 1)-form φ ∈ Lq(Rn), such

that
dφ = α and ‖φ‖q ≤ C ‖α‖1.

(2) Heisenberg case Hn ≡ R2n+1. Let h = 1, . . . , 2n and set q = (2n+2)/(2n+
1) if h 6= n + 1 and q = (2n + 2)/(2n) if h = n + 1. For every dc-closed
h-form α ∈ L1

0(H
n), there exists an (h− 1)-form φ ∈ Lq(Hn), such that

dcφ = α and ‖φ‖q ≤ C ‖α‖1.

Furthermore, in both cases, if α is compactly supported, so is φ.

We also prove local versions of these inequalities, of the following types (see
Corollary 6.5).

Theorem 1.2. (1) Euclidean case. For h = 1, . . . , n − 1, let q = n/(n − 1).
For every λ > 1, there exists C with the following property. Let B(R) be a
ball of radius R in Rn.
(a) Interior Poincaré inequality: for every closed h-form α ∈ L1(B(λR)),

there exists an (h− 1)-form φ ∈ Lq(B(R)), such that

dφ = α|B(R) and ‖φ‖Lq(B(R)) ≤ C ‖α‖L1(B(λR)).

(b) Sobolev inequality: for every closed h-form α ∈ L1 with support in
B(R), there exists an (h − 1)-form φ ∈ Lq, with support in B(λR),
such that

dφ = α and ‖φ‖Lq(B(λR)) ≤ C ‖α‖L1(B(R)).

(2) Heisenberg case: for h = 1, . . . , 2n, let q = (2n+ 2)/(2n+ 1) if h 6= n + 1
and q = (2n + 2)/(2n) if h = n + 1. There exist λ > 1 and C with the
following property. Let B(R) be a ball of radius R in H

n.
(a) Interior Poincaré inequality. For every dc-closed Rumin h-form α ∈

L1(B(λR)), there exists an (h− 1)-form φ ∈ Lq(B(R)), such that

dcφ = α|B(R) and ‖φ‖Lq(B(R)) ≤ C ‖α‖L1(B(λR)).

(b) Sobolev inequality: for every dc-closed Rumin h-form α ∈ L1 with
support in B(R), there exists an (h− 1)-form φ ∈ Lq, with support in
B(λR), such that

dcφ = α and ‖φ‖Lq(B(λR)) ≤ C ‖α‖L1(B(R)).

Finally, we construct smoothing homotopies on Riemannian or contact subRie-
mannian manifolds of bounded geometry (see [13], Proposition 1, p. 77). Roughly
speaking, a Riemannian manifold has Ck-bounded geometry if it admits an atlas of
charts defined on the unit Euclidean ball, with uniformly bounded Lipschitz con-
stant, and such that changes of charts have uniformly bounded derivatives up to
order k. In the contact subRiemannian case, the models are unit Heisenberg balls,
the charts are assumed to be contactomorphisms and only horizontal derivatives
play a role. Details appear in Definition 7.1.

Theorem 1.3. (1) Riemannian case: let M be a Riemannian manifold of di-
mension 2n + 1 and bounded Ck-geometry, where k is an integer, k ≥ 2.
For h = 1, . . . , n − 1, let q = n/(n − 1). Let 1 ≤ q′ ≤ q. There exist
operators S and T on h-forms on M such that S is bounded from L1 to
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W k−1,q′ , T is bounded from L1 ∩ d−1L1 to Lq
′

, and the homotopy identity
1 = S + dT + Td holds on L1 ∩ d−1L1.

(2) SubRiemannian contact case: let M be a subRiemannian contact manifold
of dimension 2n+1 and bounded Ck-geometry, where k is an integer, k ≥ 3.
For h = 1, . . . , 2n, let q = (2n+2)/(2n+1) if h 6= n+1 and q = (2n+2)/(2n)
if h = n+1. Let 1 ≤ q′ ≤ q. There exist operators S and T on h-forms on
M such that S is bounded from L1 toW k−1,q′ , T is bounded from L1∩d−1L1

to Lq
′

, and the homotopy identity 1 = S + dcT +Tdc holds on L1 ∩ d−1
c L1.

Furthermore, in degree h = n + 1, T is bounded from W j−1,1 to W j,1 for
all 1 ≤ j ≤ k − 1.

Such local Poincaré inequalities and smoothing homotopies are the necessary
ingredients in order to prove that Rumin’s complex can be used to compute the
ℓq,1-cohomology of a subRiemannian contact manifold, see [37]. Therefore Theorem
1.1 has significance in geometric group theory, see Corollary 8.2.

This paper is organised as follows: in Section 2 we provide a sketch of the proof
of Theorems 1.1 and 6.5. Section 3 deals with continuity properties of homogeneous
kernels in Carnot groups and with function spaces. Most of the results are more or
less known, except, as long as we know, for Theorem 3.13. Preliminary results on
Heisenberg groups, Rumin’s complex and Laplacians are gathered in Section 4. The
proof of Theorem 1.1 is contained in Section 5 and relies on Gagliardo-Nirenberg
type inequalities proved therein, and interior inequalities stated in Theorem 6.5 are
proved in Section 6 via suitable smoothing homotopy formulas. Finally, Sections 7
and 8 deal with Riemannian and contact manifolds with bounded geometry.

2. Scheme of proof

In this Section we sketch the proof of Theorems with more details in the Eu-
clidean case, whereas the body of this paper will contain only the proofs for differ-
ential forms in Heisenberg groups which require several further arguments.

2.1. Euclidean case. Let q = n/(n − 1). According to Lanzani-Stein, in degrees
< n, for smooth compactly supported forms u,

‖u‖q ≤ C (‖du‖1 + ‖d∗u‖N),(1)

where ‖ · ‖N denotes either L1-norm (in degrees 6= 1) or the norm of the real Hardy
space H1 (in degree 1). Since the inverse of the Laplacian, ∆−1, commutes with d,
the operator K = d∗∆−1 satisfies dK +Kd = 1 on smooth compactly supported
forms. Given a closed form α ∈ L1(Rn), u = Kα is not compactly supported, so
cannot be directly plugged in (1). Therefore we use a smooth cut-off function χ
and put

φ = d∗(χ∆−1α).

Then φ has compact support, d∗φ = 0 and

dφ = [dd∗, χ]∆−1α+ χdd∗∆−1α = [dd∗, χ]∆−1α+ χα.

The point is to estimate the garbage term ‖[dd∗, χ]∆−1α‖1. Notice that [dd∗, χ] is
a first order differential operator, of the form [dd∗, χ] = P0+P1 where P0 has order
0 and depends on second derivatives ∇2χ and P1 has order 1 and depends on first
derivatives ∇χ only. Both P0∆

−1 and P1∆
−1 have homogeneous kernels.
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Here comes our key trick. If P is the operator of convolution with a kernel of
type µ > 0, and α ∈ L1, then the L1 norm of Pα on shells B(0, 2R) \ B(0, R) is
O(Rµ). If furthermore α ∈ L1

0, this can be improved to o(Rµ).
Pick χ = χR such that dχR is supported in the shell B(0, 2R)\B(0, R), |∇χR| ≤

1
R and |∇2χR| ≤

1
R2 . Then ‖P0∆

−1α‖1 and ‖P1∆
−1α‖1 tend to 0 as R→ ∞. Then

‖φ‖q stays uniformly bounded, yielding eventually that d∗∆−1α ∈ Lq, thanks to
Fatou’s theorem.

The local Poincaré inequality is based on Iwaniec-Lutoborsky’s homotopy, [25].
This homotopy is defined by a kernel k which belongs to Lq in a neighborhood of
the origin, for every q < n/(n− 1), but not for q = n/(n− 1). Fortunately, Young’s
inequality suffices to prove that a truncation of k maps L1 to L1. This provides an
L1 local primitive for a closed form, up to a smoothed closed form, which belongs
to W 1,1. The L1 primitive is upgraded to Ln/(n−1) using a cut-off and Theorem
1.1. To the smoothed form, one can again apply Iwaniec-Lutoborsky’s homotopy,
which yields a form in W 1,1. The Sobolev embedding W 1,1 ⊂ Ln/(n−1) concludes
the argument.

For further details in the Euclidean case, we refer to [4].

2.2. Heisenberg case. We use Rumin’s Laplacian ∆H on Rumin forms. It does
not quite commute with Rumin’s differential dc in degrees n − 1 and n + 2 but
this turns out to be harmless. Write K = d∗c∆

−1
H

(with a modification in degrees n
and n + 1), in order that dcK +Kdc = 1 on smooth compactly supported forms.
In spite of the complicated form of Leibniz’ formula for dc, the basic features of
commutators [dcd

∗
c , χ]∆

−1
H

from the Euclidean case persist.
The local Poincaré inequality requires special care in the Heisenberg case, since

no analogue of Iwaniec-Lutoborsky’s homotopy exists. The kernel of K = d∗c∆
−1
H

is a valuable replacement. This provides again a L1 local primitive for a dc-closed
form, up to a smoothed dc-closed form, which belongs to W 3,1. The L1 primitive
is upgraded to Lq using a cut-off and Theorem 1.1 in the same manner. To the
smoothed form, one can apply Rumin’s homotopy, yielding a W 2,1 dc-closed form,
and then Iwaniec-Lutoborsky’s Euclidean homotopy. The resulting form belongs
to Lq, with q = (2n+ 2)/(2n+ 1) if h 6= n+ 1 and q = (2n+ 2)/(2n) if h = n+ 1,
again by Sobolev embedding.

2.3. Gaffney type inequality in Euclidean spaces. If p > 1, an alternative
route to Poincaré’s inequality could be to first establish a Gaffney type inequality:
for every differential form φ such that dφ and δφ ∈ Lp,

‖∇φ‖p ≤ C (‖dφ‖p + ‖δφ‖p).

Combined with (p−Poincaré) inequality for functions, ‖φ−cφ‖np/(n−p) ≤ C ‖∇φ‖p,
this implies (p−Poincaré) for forms. Unfortunately, if p = 1, Gaffney’s inequality
trivially holds for forms of degree 0, but fails in every degree ≥ 1. This follows
from Ornstein’s non-inequality, [36]. Indeed, in degrees ≥ 1, ∇φ = δφ + dφ + Rφ,
where all three components constitute a linearly independent collection of linear
first order constant coefficient differential operators on Rn. Therefore no universal
inequality

‖Rφ‖1 ≤ C (‖dφ‖1 + ‖δφ‖1)

can hold, even for forms with compact support in a fixed ball.
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However, the following statement is still open for h 6= 1, n : in Rn, for every
closed differential h-form ω in L1, does there exist an (h − 1)-form φ such that
dφ = ω and

‖∇φ‖1 ≤ C ‖ω‖1 ?

This is true if L1 is replaced with Hardy space H1.

3. Kernels

In Theorem 1.1, the primitive φ of a closed form ω is provided by an operator
defined by convolution with a homogeneous (matrix valued) function. We collect in
this section the classical properties of such operators, especially their boundedness
in function spaces in the Lebesgue and Sobolev scales. A special care will be taken
of boundedness on L1, a fact which is not standard.

This section applies to the wider class of Carnot groups, which contains both
abelian and Heisenberg groups.

3.1. Convolutions on Carnot groups. A Carnot group G of step κ is a con-
nected, simply connected Lie group whose Lie algebra g admits a step κ stratifica-
tion, i.e. there exist linear subspaces V1, ..., Vκ such that

(2) g = V1 ⊕ ...⊕ Vκ, [V1, Vi] = Vi+1, Vκ 6= {0}, Vi = {0} if i > κ,

where [V1, Vi] is the subspace of g generated by the commutators [X,Y ] with X ∈ V1
and Y ∈ Vi. The exponential map is a one to one map from g onto G. Using
exponential coordinates, we identify a point p ∈ G with the N -tuple (p1, . . . , pN ) ∈
RN and we identify G with (RN , ·) where the explicit expression of the group
operation · is determined by the Campbell-Hausdorff formula (see, e.g., [17]). In
exponential coordinates the unit element e of G is e = (0, . . . , 0).

The first layer V1 will be called horizontal layer; a left-invariant vector field in
V1, identified with a differential operator, will be called an horizontal deerivative.

From now on, we shall denote by {W1, . . . ,Wm} a basis of V1.
The N -dimensional Lebesgue measure Ln, is the Haar measure of the group G.

For any λ > 0, the dilation δλ : G → G, is defined as

(3) δλ(x1, ..., xN ) = (λd1x1, ..., λ
dNxN ),

where di ∈ N is called the homogeneity of the variable xi in G (see [17] Chapter 1).
We denote by Q the homogeneous dimension of G defined by

(4) Q :=
κ
∑

i=1

i dimVi.

Through this paper we shall assume that Q ≥ 3.
In this paper we denote by | · | a homogeneous norm, smooth outside the origin,

that induces a genuine distance on G as in [42], p. 638. In the special case of
G = Hn, the n-th Heisenberg group, this homogeneous norm is the Korányi norm
ρ (see (23)). Later on, we shall use the following gauge distance:

d(x, y) = |y−1x|,

and we denote by B(x,R) the d-ball of radius R centred at x.
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Following e.g. [17], we can define a group convolution in G: if, for instance,
f ∈ D(G) and g ∈ L1

loc(G), we set

(5) f ∗ g(p) :=

∫

f(q)g(q−1 · p) dq for q ∈ G.

We remind that, if (say) g is a smooth function and P is a left invariant differential
operator, then

P (f ∗ g) = f ∗ Pg.

If f is a real function defined in G, we denote by vf the function defined by vf(p) :=
f(p−1), and, if T ∈ D′(G), then vT is the distribution defined by 〈vT |φ〉 := 〈T |vφ〉
for any test function φ.

We remind also that the convolution is again well defined when f, g ∈ D′(G),
provided at least one of them has compact support. In this case the following
identities hold

(6) 〈f ∗ g|φ〉 = 〈g|vf ∗ φ〉 and 〈f ∗ g|φ〉 = 〈f |φ ∗ vg〉

for any test function φ, where we use the notation 〈·|·〉 for the duality between D′

and D.
As in [17], we also adopt the following multi-index notation for higher-order

derivatives. If I = (i1, . . . , i2n+1) is a multi–index, we setW I =W i1
1 · · ·W i2n

2n T i2n+1.
By the Poincaré–Birkhoff–Witt theorem, the differential operatorsW I form a basis
for the algebra of left invariant differential operators in G. Furthermore, we set

|I| := i1 + · · ·+ i2n + i2n+1

the order of the differential operator W I , and

d(I) := i1 + · · ·+ i2n + 2i2n+1

its degree of homogeneity with respect to group dilations.
Suppose now f ∈ E ′(G) and g ∈ D′(G). Then, if ψ ∈ D(G), we have

〈(W If) ∗ g|ψ〉 = 〈W If |ψ ∗ vg〉 = (−1)|I|〈f |ψ ∗ (W I vg)〉 = (−1)|I|〈f ∗ vW I vg|ψ〉.

Thus

〈(W If) ∗ g|ψ〉 = 〈W If |ψ ∗ vg〉 = (−1)|I|〈f |ψ ∗ (W I vg)〉

= (−1)|I|〈f ∗ vW I vg|ψ〉.
(7)

3.2. Kernels, basic properties. Following [16], we remind now the notion of
kernel of type µ and some properties stated below in Proposition 3.2.

Definition 3.1. A kernel of type µ is a homogeneous distribution of degree µ−Q
(with respect to group dilations), that is smooth outside of the origin.

The convolution operator with a kernel of type µ is still called an operator of type
µ.

Proposition 3.2. Let K ∈ D′(G) be a kernel of type µ.

i) vK is again a kernel of type µ;
ii) WK and KW are associated with kernels of type µ− 1 for any horizontal

derivative W ;
iii) If µ > 0, then K ∈ L1

loc(G).
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Lemma 3.3. Let g be a a kernel of type µ > 0, and let ψ ∈ D(G) be a test function.
Then ψ ∗ g is smooth on G.

If, in addition, R is an homogeneous polynomial of degree ℓ ≥ 0 in the horizontal
derivatives, we have

R(ψ ∗ g)(p) = O(|p|µ−Q−ℓ) as p→ ∞.

On the other hand, if g is a smooth function in G \ {0} that satisfies the logarith-
mic estimate |g(p)| ≤ C(1 + | ln |p||) and in addition its horizontal derivatives are
homogeneous of degree −1 with respect to group dilations, then, if ψ ∈ D(G) and
R is an homogeneous polynomial of degree ℓ ≥ 0 in the horizontal derivatives, we
have

R(ψ ∗ g)(p) = O(|p|−ℓ) as p→ ∞ if ℓ > 0;

R(ψ ∗ g)(p) = O(ln |p|) as p→ ∞ if ℓ = 0.

In particular, if ψ ∈ D(G), and K is a kernel of type µ < Q, then both ψ ∗K
and all its derivatives belong to L∞(G).

In the following theorem we gather some continuity properties for convolutions
that can be find in [16] and [17] (or easily derived from [16] [17]).

Theorem 3.4. We have:

i) Hausdorff-Young inequality holds, i.e., if f ∈ Lp(G), g ∈ Lq(G), 1 ≤
p, q, r ≤ ∞ and 1

p + 1
q − 1 = 1

r , then f ∗ g ∈ Lr(G) (see [17], Proposition

1.18) .
ii) If K is a kernel of type 0, 1 < p <∞, ≥ 0, then the mapping T : u→ u∗K

defined for u ∈ D(G) extends to a bounded operator on W s,p(G) (see [16],
Theorem 4.9).

iii) Suppose 0 < µ < Q, 1 < p < Q/µ and 1
q = 1

p − µ
Q . Let K be a kernel of

type µ. If u ∈ Lp(G) the convolutions u ∗K and K ∗ u exists a.e. and are
in Lq(G) and there is a constant Cp > 0 such that

‖u ∗K‖q ≤ Cp‖u‖p and ‖K ∗ u‖q ≤ Cp‖u‖p

(see [16], Proposition 1.11).
iv) Suppose s ≥ 1, 1 < p < Q, and let U be a bounded open set. If K is a

kernel of type 1 and u ∈ W s−1,p(G) with supp u ⊂ U , then

‖u ∗K‖W s,p(G) ≤ CU‖u‖W s−1,p(G).

Proof. The proof of iv) can be carried out relying on Theorems 4.10, 4.9 and Propo-
sition 1.11 of [16], keeping into account that LpQ/(Q−p)(U) ⊂ Lp and Proposition
3.2, ii). Indeed

‖u ∗K‖W s,p(G) ≤ C
{

‖u ∗K‖Lp(G) +

m
∑

ℓ=1

‖u ∗WℓK‖W s−1,p(G)

}

≤ C
{

‖u ∗K‖Lp(G) + ‖u‖W s−1,p(G)

}

≤ C
{

‖u‖LpQ/(Q−p(G) + ‖u‖W s−1,p(G)

}

≤ CU‖u‖W s−1,p(G).

�

Definition 3.5. Let f be a measurable function on G. If t > 0 we set

λf (t) = |{|f | > t}|.



9

If 1 ≤ p ≤ ∞ and
sup
t>0

λpf (t) <∞,

we say that f ∈ Lp,∞(G).

Definition 3.6. Following [8], Definition A.1, if 1 < p <∞, we set

‖u‖Mp := inf{C ≥ 0 ;

∫

K

|u| dx ≤ C|K|1/p
′

for all L-measurable set K ⊂ G}.

and Mp =Mp(G) is the set of measurable functions u on G satisfying ‖u‖Mp <∞.

Repeating verbatim the arguments of [8], Lemma A.2, we obtain

Lemma 3.7. If 1 < p <∞, then

(p− 1)p

pp+1
‖u‖pMp ≤ sup

λ>0
{λp|{|u| > λ}| } ≤ ‖u‖pMp .

In particular, if 1 < p <∞, then Mp = Lp,∞(G).

Corollary 3.8. If 1 ≤ s < p, then Mp ⊂ Lsloc(G) ⊂ L1
loc(G).

Proof. By Lemma 3.7, if u ∈Mp then |u|s ∈Mp/s, and we can conclude thanks to
Definition 3.6.

�

Lemma 3.9. Let E be a kernel of type α ∈ (0, Q). Then for all f ∈ L1(G) we have
f ∗ E ∈MQ/(Q−α) and there exists C > 0 such that

‖f ∗ E‖MQ/(Q−α) ≤ C‖f‖L1(G)

for all f ∈ L1(G). In particular, by Corollary 3.8, if 1 ≤ p < Q/(Q − α), then
f ∗ E ∈ Lploc(G) ⊂ L1

loc(G).

As in [5], Lemma 4.4 and Remark 4.5, we have:

Remark 3.10. Suppose 0 < α < Q. If K is a kernel of type α and ψ ∈ D(G),
ψ ≡ 1 in a neighborhood of the origin, then the statements of Lemma 3.9 still hold
if we replace K by (1− ψ)K or by ψK.

3.3. Estimates on shells. Here, we prove a fine boundedness property of kernels
in L1, expressed in terms of L1 norms on shells. It will play a crucial role in section
5. We start with a preliminary duality lemma.

Lemma 3.11. If K is a kernel of type µ ∈ (0, Q), u ∈ L1(G) and ψ ∈ D(G), then

(8) 〈u ∗K|ψ〉 = 〈u|ψ ∗ vK〉.

In this equation, the left hand side is the action of a matrix-valued distribution
on a vector-valued test function, see formula (25), the right hand side is the inner
product of an L1 vector-valued function with an L∞ vector-valued function.

Proof. The assertion follows by Fubini-Tonelli theorem. Indeed
∫ ∫

|K(y−1x)| |u(y)||ψ(x)| dy dx

≤ C

∫ ∫

d(x, y)µ−Q |u(y)||ψ(x)| dy dx <∞.

(9)
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Since ψ is compactly supported there exists M > 0 such that the above integral
can be written as

∫

|x|≤M

∫

· · · =

∫

|x|≤M

∫

|y|≤2M

· · ·+

∫

|x|≤M

∫

|y|>2M

· · · .

Now

∫

|x|≤M

∫

|y|≤2M

d(x, y)µ−Q |u(y)||ψ(x)| dy dx

≤ Cψ

∫

|x|≤M

∫

|y|≤2M

d(x, y)µ−Q |u(y)| dy, dx

≤ Cψ

∫

|x|≤M

(

∫

d(x,y)≤3M

d(x, y)µ−Q dx
)

|u(y)| dy

≤ Cψ‖u‖L1(G).

(10)

On the other hand, if |x| ≤M and |y| > 2M , then d(x, y) > M . so that

∫

|x|≤M

∫

|y|>2M

d(x, y)µ−Q |u(y)||ψ(x)| dy dx

≤Mµ−Q‖ψ‖L1(G)‖u‖L1(G).

(11)

Then

∫

(

∫

K(y−1x)u(y) dy
)

ψ(x) dx

=

∫

(

∫

K(y−1x)ψ(x) dx
)

u(y) dy

=

∫

(

∫

vK(x−1y)ψ(x) dx
)

u(y) dy,

(12)

and therefore we are done.
�

Remark 3.12. The conclusion of Lemma 3.11 still holds if we assume K ∈
L1
loc(G), provided u is compactly supported.

Theorem 3.13. If K is a kernel of type α ∈ (0, Q), then for any f ∈ L1(G) such
that

(13)

∫

G

f(y) dy = 0,

we have:

R−α

∫

B(e,2R)\B(e,R)

|K ∗ f | dx −→ 0 as R → ∞.
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Proof. If R > 1, taking into account (13), we have:

R−α

∫

B(e,2R)\B(e,R)

|K ∗ f | dx = R−α

∫

R<|x|<2R

dx
∣

∣

∣

∫

K(y−1x)f(y) dy
∣

∣

∣

= R−α

∫

R<|x|<2R

dx
∣

∣

∣

∫

[

K(y−1x)−K(x)
]

f(y) dy
∣

∣

∣

≤ R−α

∫

|f(y)|
(

∫

R<|x|<2R

∣

∣

∣K(y−1x)−K(x)
∣

∣

∣ dx
)

dy

= R−α

∫

|y|< 1
2R

|f(y)|
(

· · ·
)

dy +R−α

∫

1
2R<|y|<4R

|f(y)|
(

· · ·
)

dy

+R−α

∫

|y|>4R

|f(y)|
(

· · ·
)

dy

=: R−αI1(R) +R−αI2(R) +R−αI3(R).

Consider first the third term above. By homogeneity we have

I3(R) ≤ CK

∫

|y|>4R

|f(y)|
(

∫

R<|x|<2R

(d(x, y)−Q+α + d(x, e)−Q+α) dx
)

dy

Notice now that, if |y| > 4R and R < |x| < 2R, then d(x, y) ≥ |y|−|x| ≥ 4R−R =≥
3
2 |x|. Therefore, by [17], Corollary 1.16,

d(x, y)−Q+α + d(x, e)−Q+α ≤

{

(2

3

)Q−α
+ 1

}

|x|−Q+α,

and then
∫

R<|x|<2R

(d(x, y)−Q+α + d(x, e)−Q+α) dx ≤ CαR
α.

Thus

R−αI3(R) ≤ CK,α

∫

|y|>4R

|f(y)| dy −→ 0

as R→ ∞.
Consider now the second term. Again we have

I2(R) ≤ CK

∫

1
2R<|y|<4R

|f(y)|
(

∫

R<|x|<2R

(d(x, y)−Q+α + d(x, e)−Q+α) dx
)

dy.

Obviously, as above,
∫

R<|x|<2R

d(x, e)−Q+α dx ≤ CRα.

Notice now that, if
1

2
R < |y| < 4R and R < |x| < 2R, then d(x, y) ≤ |x|+ |y| ≤ 6R.

Hence
∫

1
2R<|y|<4R

|f(y)|
(

∫

d(x,y)<6R

d(x, y)−Q+α dx
)

dy ≤ CRα.

Therefore

R−αI2(R) ≤ CK

∫

1
2R<|y|<4R

|f(y)| dy −→ 0
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as R → ∞. Finally, if |y| < R
2 and R < |x| < 2R we have |y| < 1

2 |x|, so that, by
[17], Proposition 1.7 and Corollary 1.16,

R−αI1(R) ≤ CK

∫

|y|< 1
2R

|f(y)|
(

∫

R<|x|<2R

|y|

|x|Q−α+1
dx

)

dy

= CK

∫

G

|f(y)||y|χ[0, 12R](|y|)
(

R−α

∫

R<|x|<2R

1

|x|Q−α+1
dx

)

dy

≤ CK

∫

G

|f(y)||y|χ[0, 12R](|y|)R
−1 dy =: CK

∫

G

|f(y)|HR(|y|) dy.

Obviously, for any fixed y ∈ G we have (|y|)HR(|y|) → 0 as R → ∞. On the other
hand, |f(y)|HR(|y|) ≤

1
2 |f(y)|, so that, by dominated convergence theorem,

R−αI1(R) −→ 0

as R→ ∞.
This completes the proof of Theorem 3.13. �

3.4. Powers of Kohn’s Laplacian and Sobolev spaces. In section 8, we shall
construct operators of order −1, and we shall need to show that they improve
differentiability. They win one degree of differentiability on the Lp scale when
p > 1, but not on the L1 scale. This is why we need introduce fractional Sobolev
spaces, fortunately only for exponents p > 1. We choose to define them using
powers of Kohn’s Laplacian.

Let {X1, . . . , Xm} be the fixed basis of the horizontal layer V1 of g chosen above.
We denote by ∆G the negative horizontal sublaplacian

∆G :=

m
∑

j=1

X2
j .

If 1 < p <∞ and a ∈ C, we define (−∆G)
a/2 in Lp(G) following [16]. If in addition

s ≥ 0, again as in [16], we denote by W s,p
G

(G) the domain of the realization of

(−∆G)
s/2 in Lp(G) endowed with the graph norm. In fact, as soon as p ∈ (1,∞)

is fixed, to avoid cumbersome notations, we do not stress the explicit dependence
on p of the fractional powers (−∆G)

s/2 and of its domain.

Remark 3.14. By [40], Proposition 6, if p > 1, then the spaces W s,p
G

(G), s ≥ 0
provide a complex interpolation scale of Banach spaces (see e.g. [9]).

Proposition 3.15. The operators (−∆G)
s/2 are left invariant on W s,p

G
(G).

We recall that

Proposition 3.16 ([16], Corollary 4.13). If 1 < p < ∞ and ℓ ∈ N, then the space

W ℓ,p
G

(G) coincides with the space of all u ∈ Lp(G) such that

XIu ∈ Lp(G) for all multi-indices I with d(I) = ℓ,

endowed with the natural norm.

Proposition 3.17 ([16], Corollary 4.14). If 1 < p < ∞ and s ≥ 0, then the space
W s,p

G
(G) is independent of the choice of X1, . . . , Xm.

Proposition 3.18. If 1 < p < ∞ and s ≥ 0, then S(G) and D(G) are dense
subspaces of W s,p

G
(G).
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Theorem 3.19 ([16], Corollary 4.15). If φ ∈ D(G), the map f → φf is continuous
from W s,p(G) to W s,p(G) for p > 1 and s ≥ 0.

The following Proposition is a tool to prove that a given operator maps a suitable
function space into a Sobolev space W s,p. Indeed, it reduces the question to the
case of the kernel of a negative power of ∆G. It will be used in Lemma 3.26.

Proposition 3.20 (see [16]). Suppose 0 < β < Q. Denote by h = h(t, x) the
fundamental solution of −∆G + ∂/∂t (see [16], Proposition 3.3). Then the integral

Rβ(x) =
1

Γ(β/2)

∫ ∞

0

t
β
2 −1h(t, x) dt

converges absolutely for x 6= 0.
Moreover

i) Rβ is a kernel of type β;
ii) if α ∈ (0, 2) and u ∈ D(G), then

(−∆G)
α/2u = −∆G(u ∗R2−α).

3.5. Function spaces in domains. When dealing with subRiemannian manifolds
in section 8, we shall need to localize Sobolev spaces on balls and transport them
by contactomorphims. Therefore we provide a precise definitions of W s,p(D) for D
a good domain, typically a ball, in a Carnot group.

Definition 3.21. As in Proposition 3.16, if D ⊂ G is a connected open set, ℓ is a
nonnegative integer and p ≥ 1, we set

W ℓ,p(D) := {u ∈ Lp(D) : W Iu ∈ Lp(D) , d(I) ≤ ℓ}.

From now on, we assume that D is an extension domain, i.e.

Definition 3.22. We say that a connected bounded open set D ⊂ G is an extension

domain if it enjoys the so-called extension property, i.e. for any ℓ ∈ N there exists
a bounded linear operator

(14) pℓ :W
ℓ,p(D) →W ℓ,p(G)

such that pℓu ≡ u in D.

Sufficient conditions yielding that D enjoys the extension property are largely
studied in the literature. We do not enter into technical details, but we recall the
following facts:

• In general Carnot groups “elementary” qualitative conditions for (14) are
not known. Smooth domains may fail to be extension domains.

• The so-called (ǫ, δ) (or uniform) domains are extension domains. In par-
ticular, in Heisenberg groups, Carnot-Carathéodory balls are extension do-
mains.

• In Carnot groups of step 2, C1,1-domains are extension domains. In partic-
ular, we shall need later that Korányi balls in Heisenberg groups (see (23)
below) are extension domains. In particular, in Heisenberg groups there is
a basis of the topology made by extension domains. This provides a precise

meaning for the fractional local Sobolev spaces W ℓ,p
loc (G).

• In general Carnot groups, bounded intrinsic Lipschitz domains are exten-
sion domains.
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For proofs of the above results and for an overview of the problem we refer for
instance to [12], [28], [35], [22], [11], [34] [33], [46], [20].

The following definition is not optimal but suffices for our purposes: if s is a
nonnegative integer, the notion of Sobolev space given in Definitions 3.21 is equiv-
alent to the following one when the domain is an extension domain, as we will see
in Remark 3.24 below.

Definition 3.23. Let D be a connected bounded open set enjoying the extension
property (14). Denote by rD the operator of restriction to D. If s ≥ 0 and p > 1
we set

W s,p(D) = {rDu , u ∈ W s,p(G)},

endowed with the norm

(15) ‖u‖W s,p(D) := inf{‖v‖W s,p(G) , rDv = u}.

Remark 3.24. If s is a nonnegative integer, then Definitions 3.23 and 3.21 are
equivalent (in bounded extension domains). Indeed, denote for a while by ‖u‖∗W s,p(D)

the norm defined in (15), keeping the notation ‖u‖W s,p(D) for the norm of Defini-
tion 3.21. Thus, since rDpsu ≡ u, we have

‖u‖∗W s,p(D) ≤ ‖psu‖W s,p(G) ≤ C‖u‖W s,p(D).

On the other hand, let v be an arbitrary extension of u outside D. We notice that
for any horizontal derivative W we have Wu = rD(Wv). Thus

‖u‖W s,p(D) ≤ ‖v‖W s,p(G),

so that, taking the infimum of the right-hand side of this inequality for all extensions
v, we have

‖u‖W s,p(D) ≤ ‖u‖∗W s,p(D).

Remark 3.25. It is easy to see that Proposition 3.18 and Theorem 3.19 still hold
for Sobolev spaces in D.

3.6. Truncated kernels. The interior inequalities of Theorem 1.2 rely on convo-
lution with functions of the form ψK where K is a kernel and ψ a smooth cut-off.
We establish now boundedness properties of such operators.

Lemma 3.26. Let K be a kernel of type α ∈ (0, 2] and let ψ ∈ D(G), ψ ≡ 1 in a
neighborhood of the origin. Let χ0 ∈ D(G). If D is a bounded extension domain (see
Definition 3.22), α′ > 0, α−1 < α′ < α and Q/(Q−α) > p > Q/(Q−α+α′) > 1,
then the map

χ0f → (χ0f) ∗ ψK

is continuous from L1(G) to Wα′,p(D).

Proof. Since both χ0 and ψK are compactly supported, then (χ0f) ∗ ψK is com-
pactly supported in a bounded open set U and, obviously, is an extension of
rD((χ0f) ∗ ψK). Hence

‖(χ0f) ∗ ψK‖W 1,α′ (D) ≤ ‖(χ0f) ∗ ψK‖Lp(U) + ‖∆
α′/2
G

((χ0f) ∗ ψK)‖Lp(G).

Since p < Q/(Q− α), by Theorem 3.4 - i), f ∗ ψK belongs to Lp(G) and the first
term above is estimated as we want.

We are left with the estimation of the second norm above.
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By density we can always suppose f ∈ D(G), so that (χ0f) ∗ψK ∈ D(G). Thus,
by Proposition 3.20, ii)

(16) −∆
α′/2
G

((χ0f) ∗ ψK) = −∆G

(

((χ0f) ∗ ψK) ∗R2−α′

)

.

On the other hand, we can write (χ0f) ∗ ψK = (χ0f) ∗K − (χ0f) ∗ (1 − ψ)K, so
that

(17) −∆
α′/2
G

((χ0f) ∗ ψK) = −∆
α′/2
G

((χ0f) ∗K)−−∆
α′/2
G

((χ0f) ∗ (1 − ψ)K).

Let us consider the second term of (17). We notice first that, keeping in mind
that R2−α′ is a kernel of type 2− α′, we can apply Lemma 1.12 of [16], to get

(18) (f ∗ (1− ψ)K) ∗R2−α′ = f ∗
(

(1− ψ)K ∗R2−α′

)

.

Indeed, K is a kernel of type α, and then

|(1− ψ)K| ≤ C
(

1 + |x|α−Q
)

,

so that (1 − ψ)K ∈ Lq(G) for fome suitable q > 1, provided 1/q < 1 − α/Q. In
addition

1 +
1

q
−

2− α′

Q
− 1 > 0,

since
Q− α

Q
−

2− α′

Q
> 0,

and we can alway choose q such that

(19)
1

q
∈
(2− α′

Q
,
Q− α

Q

)

.

This prove (18).
We stress that the choice of q will not affect the remaining part of the proof,

since q is merely a tool used to prove identity (18).
By (18), we get

∆G

(

((χ0f) ∗ (1− ψ)K) ∗R2−α′

)

= (χ0f) ∗∆G

(

(1− ψ)K ∗R2−α′

)

= (χ0f) ∗
(

v∆G((1 − ψ)vK) ∗R2−α′

)

.
(20)

Take now s > 1 such that

(21)
1

s
=

1

p
+

2− α′

Q
.

Keeping into account that vK is still a kernel of type α and that 1 − ψ ≡ 1 near
the infinity, by Lemma 3.3 we have

|v∆G((1 − ψ)vK)| ≤ C
(

1 + |x|α−Q−2
)

.

Hence v∆G((1− ψ)vK) ∈ Ls(G). Therefore, by Theorem 3.4 - iii) and (21)

∆G

(

(1 − ψ)K ∗R2−α′

)

∈ Lp(G).

Combining (16) and (20), by Hausdorff-Young theorem (see Theorem 3.4 -i)) we
have

‖∆
α′/2
G

((χ0f) ∗ (1 − ψ)K)‖Lp(G) ≤ ‖f‖L1(G)‖∆G

(

(1− ψ)K ∗R2−α′

)

‖Lp(G).

This provides an estimate of the second term of (17).
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Thus, we have but to consider the term −∆G

(

((χ0f) ∗K) ∗ R2−α′

)

. Since α +
2− α′ < 3 ≤ Q, by Proposition 1.13 of [16],

−∆G

(

((χ0f) ∗K) ∗R2−α′

)

= −∆G

(

((χ0f) ∗ (K ∗R2−α′)
)

= −(χ0f) ∗
(

∆G(K ∗R2−α′)
)

,

where K ∗R2−α′ is a kernel of type α+2−α′, so that, by Proposition 3.2, ∆G(K ∗
R2−α′) is a kernel of type α− α′. Therefore, by Lemma 3.9,

‖(χ0f) ∗
(

∆G(K ∗R2−α′)
)

‖Lp(D) ≤ C‖f‖L1(G)

and the proof is completed. �

The proof of the following result is similar to the previous one but for sake of
completeness we write down the details.

Theorem 3.27. Suppose p > 1, and let χ0 ∈ D(G) be fixed.

i) Let K be a kernel of type 1 and let ψ ∈ D(G) be as in Remark 3.10 above,
i.e. ψ ≡ 1 in a neighborhood of the origin. In addition, let D ⊂ G be a
bounded connected extension domain. Then the map f → (χ0f) ∗ ψK is
continuous from W s−1,p(G) to W s,p(D) for s ≥ 1.

ii) Analogously, if K is a kernel of type 0, then the map (χ0f) → f ∗ ψK is
continuous from W s,p(G) to W s,p(D).

for s ≥ 0.

Proof. Since both χ0 and ψK are compactly supported, then (χ0f) ∗ ψK is com-
pactly supported.

Let now ψ0 be a cut-off function, ψ0 ≡ 1 on D, so that ψ0

{

(χ0f) ∗ ψK
}

is an

extension of rD
{

(χ0f) ∗ ψK
}

.
Then, by definition (see (15)),

‖(χ0f) ∗ ψK‖W s,p(D) ≤ ‖ψ0

{

(χ0f) ∗ ψK
}

‖W s,p(G).

Therefore, we have but to prove that

(22) ‖ψ0

{

(χ0f) ∗ ψK
}

‖W s,p(G) ≤ C‖f‖W s−1,p(G).

By density (see Proposition 3.18), we can assume f ∈ D(G). In addition, by
interpolation (see Remark 3.14), we can assume s integer. As in the proof of
Lemma 3.26 we write ψK = K − (1− ψ)K. By Theorem 3.4, iv),

‖ψ0

{

(χ0f) ∗K
}

‖W s,p(G) ≤ ‖(χ0f) ∗K‖W s,p(G) ≤ ‖χ0f‖W s−1,p(G) ≤ ‖f‖W s−1,p(G).

On the other hand, the W s,p-norm of ψ0

{

(χ0f) ∗ (1 − ψ)K
}

can be estimated by
a sum of terms of the form

∫

G

|W Jψ0|
p|(χ0f) ∗W

I((1− ψ)K|p dx ≤ C

∫

supp ψ0

|(χ0f) ∗W
I((1 − ψ)K|p dx

with d(I) + d(J) ≤ s.
We notice now that (1 − ψ)K is a smooth function supported away from the

origin. Therefore, keeping into account that χ0 and ψ0 are compactly supported,
we can assume that (1−ψ)K is compactly supported away from the origin, so that
W I((1 − ψ)K belongs to L1(G). Thus eventually, once more by Hausdorff-Young
inequality (Theorem 3.4)
(

∫

supp ψ0

|(χ0f) ∗W
I((1 − ψ)K|p dx

)1/p

≤ C‖χ0f‖Lp(G) ≤ C‖f‖Lp(G) ≤ ‖f‖W s−1,p(G).
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This completes the proof of assertion i).
The proof of assertion ii) can be carried out in the same way, using Theorem

3.4, ii) instead of Theorem 3.4, iv).
�

4. Preliminary results on Heisenberg groups, Rumin’s complex and
Laplacians

4.1. Heisenberg groups. The n-dimensional Heisenberg group Hn is the 2-step
Carnot group whose Lie algebra

h = h1 ⊕ h2.

has h2 = R, h1 = R2n and the Lie bracket h1 × h1 → h2 is a nondegenerate
skew-symmetric form.

The group can be identified with R2n+1 through exponential coordinates and a
point p ∈ Hn can be denoted by p = (x, y, t), with both x, y ∈ Rn and t ∈ R. For a
general review on Heisenberg groups and their properties, we refer to [42], [23] and
to [45]. We limit ourselves to fix some notations following [5].

The Heisenberg group Hn can be endowed with the homogeneous norm (Korányi
norm)

(23) ̺(p) =
(

(|x|2 + |y|2)2 + t2
)1/4

,

and we define the gauge distance (a true distance, see [42], p. 638, that is equivalent
to Carnot–Carathéodory distance) as d(p, q) := ̺(p−1 · q). Finally, set B(p, r) =
{q ∈ Hn; d(p, q) < r}.

The standard basis of h is given, for i = 1, . . . , n, by

Xi := ∂xi −
1

2
yi∂t, Yi := ∂yi +

1

2
xi∂t, T := ∂t.

The only non-trivial commutation relations are [Xj , Yj ] = T , for j = 1, . . . , n.
The vector space h can be endowed with an inner product, indicated by 〈·, ·〉,

making X1, . . . , Xn, Y1, . . . , Yn and T orthonormal.
Throughout this paper, we write also

(24) Wi := Xi, Wi+n := Yi, W2n+1 := T, for i = 1, · · · , n.

The dual space of h is denoted by
∧1

h. The basis of
∧1

h, dual to the basis
{X1, . . . , Yn, T }, is the family of covectors {dx1, . . . , dxn, dy1, . . . , dyn, θ} where

θ := dt−
1

2

n
∑

j=1

(xjdyj − yjdxj)

is called the contact form in Hn. A diffeomorphism φ between open subsets of Hn

is called a contactomorphism if φ#θ is pointwise proportional to θ. In other words,
contactomorphisms preserve the contact structure ker(θ).

The stratification of the Lie algebra h induces a family of anisotropic dilations
δλ, λ > 0 in Hn. The homogeneous dimension of Hn with respect to δλ, λ > 0
equals Q := 2n + 2. Unfortunately, when dealing with differential forms in Hn,
the de Rham complex lacks scale invariance under anisotropic dilations. Thus, a
substitute for de Rham’s complex, that recovers scale invariance under δt has been
defined by M. Rumin, [38]. In turn, this notion makes sense for arbitrary contact
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manifolds. We refer to [38] and [6] for details of the construction. In the present
paper, we shall merely need the following list of formal properties.

• For h = 0, . . . , 2n+1, the space of Rumin h-forms, Eh0 is the space of smooth

sections of a left-invariant subbundle of
∧h T ∗Hn (that we still denote by

Eh0 ). Hence it inherits inner products, Lp and W s,p norms.

• A differential operator dc : E
h
0 → Eh+1

0 is defined. It is left-invariant, ho-
mogeneous with respect to group dilations. It is a first order homogeneous
operator in the horizontal derivatives in degree 6= n, whereas it is a second

order homogeneous horizontal operator in degree n.

• Contactomorphisms φ between open subsets of Hn pull-back Rumin forms
to Rumin forms, and in addition commute with dc:

dc(φ
#α) = φ#(dcα).

• The L2 (formal) adjoint of dc is a differential operator d∗c of the same order
as dc.

• Hypoelliptic “Laplacians” can be formed from dc and d
∗
c (see Definition 4.2

below).

• Altogether, operators dc form a complex: dc ◦ dc = 0.

• This complex is homotopic to de Rham’s complex (Ω•, d). The homotopy
is achieved by differential operators ΠE : E•

0 → Ω• and ΠE0 : Ω• → E•
0

(ΠE has horizontal order ≤ 1 and ΠE0 is an algebraic operator).

In other words, ΠE : E•
0 → Ω• and ΠE0 : Ω• → E•

0 intertwine differentials dc and
d,

· · ·
dc−−−−→ Eh0

dc−−−−→ Eh+1
0

dc−−−−→ · · ·

ΠE





y
ΠE





y

· · ·
d

−−−−→ Ωh
d

−−−−→ Ωh+1 d
−−−−→ · · ·

· · ·
dc−−−−→ Eh0

dc−−−−→ Eh+1
0

dc−−−−→ · · ·
x





ΠE0

x





ΠE0

· · ·
d

−−−−→ Ωh
d

−−−−→ Ωh+1 d
−−−−→ · · ·

and there exists an algebraic operatorA : Ω• → Ω•−1 such that 1−ΠE0ΠEΠEΠE0 =
0 on E•

0 and 1−ΠEΠE0ΠE0ΠE = dA+Ad on Ω•.

4.2. Leibniz formula. When dc is second order, (E•
0 , dc) stops behaving like a

differential module. This is the source of many complications.

Lemma 4.1 (see also [5], Lemma 3.2). If ζ is a smooth real function, then

i) if h 6= n, then on Eh0 we have:

[dc, ζ] = P h0 (Wζ),

where P h0 (Wζ) : Eh0 → Eh+1
0 is a linear homogeneous differential operator

of order zero with coefficients depending only on the horizontal derivatives
of ζ. If h 6= n+ 1, an analogous statement holds if we replace dc by d∗c ;
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ii) if h = n, then on En0 we have

[dc, ζ] = Pn1 (Wζ) + Pn0 (W
2ζ),

where Pn1 (Wζ) : En0 → En+1
0 is a linear homogeneous differential operator

of order 1 (and therefore horizontal) with coefficients depending only on the
horizontal derivatives of ζ, and where P h0 (W

2ζ) : En0 → En+1
0 is a linear

homogeneous differential operator in the horizontal derivatives of order 0
with coefficients depending only on second order horizontal derivatives of ζ.
If h = n+ 1, an analogous statement holds if we replace dc by d∗c .

iii) if h 6= n+ 1, then

[dcd
∗
c , ζ] = P h1 (Wζ) + P h0 (W

2ζ),

where P h1 (Wζ) : Eh0 → Eh0 is a linear homogeneous differential operator
of order 1 and therefore horizontal) with coefficients depending only on the
horizontal derivatives of ζ, and where P h0 (W

2ζ) : Eh0 → Eh0 is a linear
homogeneous differential operator in the horizontal derivatives of order 0
with coefficients depending only on second order horizontal derivatives of ζ.

iv) if h = n+ 1, then

[dcd
∗
c , ζ] = Pn+1

3 (Wζ) + Pn+1
2 (W 2ζ) + Pn+1

1 (W 3ζ) + Pn+1
0 (W 4ζ),

where for j = 0, 1, 2, 3, the Pn+1
j (W 4−jζ) : En+1

0 → En+1
0 are linear ho-

mogeneous differential operators of order j and therefore horizontal) with
coefficients depending only on the horizontal derivatives of order 4− j of ζ.

Proof. The first two assertions are more or less straighforward. Let us prove the
third assertion. If u is a Rumin’s differential form of degree h, keeping in mind the
first assertion, we have

[dcd
∗
c , ζ]u = dcd

∗
c(ζu)− ζdcd

∗
cu = dc(ζd

∗
cu+ P h0 (Wζ)u) − ζdcd

∗
cu

= ζdcd
∗
cu+ P h−1

0 (Wζ)d∗cu+ dc(P
h
0 (Wζ)u)− ζdcd

∗
cu

= P h−1
0 (Wζ)d∗cu+ dc(P

h
0 (Wζ)u).

Denote by {ξhj } a left-invariant basis of Eh0 . If u =
∑

j ujξ
h
j , then P

h
0 (Wζ)v =

∑

j,k aj,k(Wkζ)ukξ
h
j . Thus, using i) on vkξ

h
j for all j, k, we get

dc(P
h
0 (Wζ)u =

∑

j,k

aj,k(Wkζ)dc(ukξ
h
j ) +

∑

j,k

P h0 (W (Wkζ))ukξ
h
j

=: P h1 (Wζ)u + P h0 (W
2ζ)u.

Therefore
[dcd

∗
c , ζ]u = P h−1

0 (Wζ)d∗cu+ P h1 (Wζ)u + P h0 (W
2ζ)u,

and the assertion follows if we still denote by P h1 (Wζ) the above operator P h−1
0 (Wζ)d∗c+

P h1 (Wζ).
The proof of iv) is similar. �

4.3. Rumin’s Laplacian.

Definition 4.2. In Hn, following [38], we define the operators ∆H,h on Eh0 by
setting

∆H,h =







dcd
∗
c + d∗cdc if h 6= n, n+ 1;

(dcd
∗
c)

2 + d∗cdc if h = n;
dcd

∗
c + (d∗cdc)

2 if h = n+ 1.
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Notice that −∆H,0 =
∑2n

j=1(W
2
j ) is the usual sub-Laplacian of Hn.

For sake of simplicity, once a basis of Eh0 is fixed, the operator ∆H,h can be
identified with a matrix-valued map, still denoted by ∆H,h

(25) ∆H,h = (∆ij
H,h)i,j=1,...,Nh

: D′(Hn,RNh) → D′(Hn,RNh),

where D′(Hn,RNh) is the space of vector-valued distributions on Hn, and Nh is the
dimension of Eh0 (see [1]).

This identification makes possible to avoid the notion of currents: we refer to [6]
for a more elegant presentation.

Definition 4.3. If a basis of E•
0 is fixed, and 1 ≤ p ≤ ∞, we denote by Lp(Hn, E•

0 )
the space of all sections of E•

0 such that their components with respect to the given
basis belong to Lp(Hn), endowed with its natural norm. Clearly, this definition is
independent of the choice of the basis itself.

The notations Mp(Hn, E•
0 ) (see Definition 3.6), D(Hn, E•

0 ), S(H
n, E•

0 ), as well
as Wm,p(Hn, E•

0 ) have the same meaning.

It is proved in [38] that ∆H,h is hypoelliptic and maximal hypoelliptic in the
sense of [24]. In general, if L is a differential operator on D′(Hn,RNh), then L
is said hypoelliptic if for any open set V ⊂ Hn where Lα is smooth, then α is
smooth in V . In addition, if L is homogeneous of degree a ∈ N, we say that L is
maximal hypoelliptic if for any δ > 0 there exists C = C(δ) > 0 such that for any
homogeneous polynomial P in W1, . . . ,W2n of degree a we have

‖Pα‖L2(Hn,RNh) ≤ C
(

‖Lα‖L2(Hn,RNh) + ‖α‖L2(Hn,RNh)

)

.

for any α ∈ D(Bρ(0, δ),R
Nh).

Combining [38], Section 3, and [7], Theorems 3.1 and 4.1, we obtain the following
result.

Theorem 4.4 (see [7], Theorem 3.1). If 0 ≤ h ≤ 2n + 1, then the differential
operator ∆H,h is homogeneous of degree a with respect to group dilations, where
a = 2 if h 6= n, n+ 1 and a = 4 if h = n, n+ 1. It follows that

i) for j = 1, . . . , Nh there exists

(26) Kj =
(

K1j , . . . ,KNhj

)

, j = 1, . . .Nh

with Kij ∈ D′(Hn) ∩ E(Hn \ {0}), i, j = 1, . . . , N ;
ii) if a < Q, then the Kij’s are kernels of type a for i, j = 1, . . . , Nh

If a = Q, then the Kij’s satisfy the logarithmic estimate |Kij(p)| ≤
C(1 + | ln ρ(p)|) and hence belong to L1

loc(H
n). Moreover, their horizontal

derivatives WℓKij, ℓ = 1, . . . , 2n, are kernels of type Q− 1;
iii) when α ∈ D(Hn,RNh), if we set

(27) ∆−1
H,hα :=

(

∑

j

αj ∗K1j, . . . ,
∑

j

αj ∗KNhj

)

,

then ∆h∆
−1
H,hα = α. Moreover, if a < Q, also ∆−1

H,h∆hα = α.

iv) if a = Q, then for any α ∈ D(Hn,RNh) there exists βα := (β1, . . . , βNh
) ∈

RNh , such that

∆−1
H,h∆hα− α = βα.
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Remark 4.5. If a < Q, ∆H,h(∆
−1
H,h−

v∆−1
H,h) = 0 and hence ∆−1

H,h = v∆−1
H,h, by the

Liouville-type theorem of [7], Proposition 3.2.

Remark 4.6. From now on, if there are no possible misunderstandings, we identify
∆−1

H,h with its kernel.

We notice that, if n > 1, then ∆−1
H,h is associated with a kernel of type 2 or 4 and

therefore ∆−1
H,hf is well defined when f ∈ L1(Hn, Eh0 ). More precisely, by Lemma

3.9 we have:

Lemma 4.7. If n > 1, 1 ≤ h ≤ 2n, then for any horizontal differential operator
W I with homogeneous order d(I), we have

i) if h 6= n, n+ 1 and d(I) = 1, then

‖f ∗W I∆−1
H,h‖MQ/(Q−1) ≤ C‖f‖L1(Hn,Eh

0 )

for all f ∈ L1(Hn, Eh0 );
ii) if h = n, n+ 1 and 1 ≤ d(I) < 4, then

‖f ∗W I∆−1
H,h‖MQ/(Q−4+d(I)) ≤ C‖f‖L1(Hn,Eh

0 )

for all f ∈ L1(Hn, Eh0 ).

By Corollary 3.8, in both cases f ∗W I∆−1
H,h ∈ L1

loc(H
n, E∗

0 ). In particular, the map

(28) ∆−1
H,h : L1(Hn, E∗

0 ) −→ L1
loc(H

n, E∗
0 )

is continuous.

Remark 4.8. Let n > 1. If α ∈ L1(Hn, E•
0 ), then ∆−1

H,hα is well defined and

belongs to L1
loc(H

n, E•
0 ). In particular, is a vector-valued distribution. By Lemma

3.11, if ψ ∈ D(Hn, Eh0 ), then

(29) 〈∆−1
H,hα|ψ〉 := 〈α|∆−1

H,hψ〉.

In this equation, the left hand side is the action of a matrix-valued distribution
on a vector-valued test function, see formula (25), whereas the right hand side
is (with a slight abuse of notation, since ∆−1

H,hψ is not a test function) the inner

product of an L1 vector-valued function with a L∞ vector-valued function.

4.4. Commutation relations. Typically, the operator used to invert dc is d
∗
c∆

−1
H

.

It inverts dc because dc commutes with ∆−1
H

. Since dc and d
∗
c commute with ∆H, it

is natural that they commute with its inverse. One first shows this for test forms,
and then (in a slightly weaker form) for L1 forms by duality.

Lemma 4.9 (see [5], Lemma 4.11). If α ∈ D(Hn, Eh0 ) and n ≥ 1, then

i) dc∆
−1
H,hα = ∆−1

H,h+1dcα, h = 0, 1, . . . , 2n, h 6= n− 1, n+ 1.

ii) dc∆
−1
H,n−1α = dcd

∗
c∆

−1
H,ndcα (h = n− 1).

iii) dcd
∗
cdc∆

−1
H,n+1α = ∆−1

H,n+2dcα, (h = n+ 1).

iv) d∗c∆
−1
H,hα = ∆−1

H,h−1d
∗
cα h = 1, . . . , 2n+ 1, h 6= n, n+ 2.

v) d∗c∆
−1
H,n+2α = d∗cdc∆

−1
H,n+1d

∗
cα (h = n+ 2).

vi) d∗cdcd
∗
c∆

−1
H,nα = ∆−1

H,n−1d
∗
cα, (h = n).
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Lemma 4.10. Let h ≥ 1. Let ω ∈ L1(Hn, Eh0 ) be a dc-closed form. Then ∆−1
H,hω

is well defined and belongs to L1
loc(H

n, Eh0 ). Furthermore, d∗cdc∆
−1
H,hω = 0 in distri-

butional sense.

Proof. Let φ ∈ D(Hn, Eh0 ). By definition, by Corollary 4.8 and by Lemma 4.9, iv),

〈d∗cdc∆
−1
H,hω|φ〉 := 〈dc∆

−1
H,hω|dcφ〉 = 〈∆−1

H,hω|d
∗
cdcφ〉 = 〈ω|∆−1

H,hd
∗
cdcφ〉 = 〈ω|d∗c∆

−1
H,hdcφ〉.

One can write ∆−1
H,hdcφ = φ ∗K where K is a kernel of type 1 or 2. Let us show

that

(30)

∫

〈ω, d∗c(φ ∗K)〉 dx = 0.

By Lemma 3.3, φ ∗K is smooth and bounded on Hn, as well as all its horizontal
derivatives. If N ∈ N, let σN be a cut-off function supported in B(e,N + 1) and
identically 1 on B(e,N). By dominated convergence theorem

∫

〈ω, d∗c(φ ∗K)〉 dx = lim
N→∞

∫

〈ω, σNd
∗
c(φ ∗K)〉 dx.

On the other hand, by Lemma 4.1,
∫

〈ω, σNd
∗
c(ψ ∗K)〉 dx =

∫

〈ω, d∗c(φ ∗K)〉 dx+

∫

〈ω, [d∗c , σN ](φ ∗K)〉 dx

= 〈dcω|σN (φ ∗K)〉+

∫

〈ω, [d∗c , σN ](φ ∗K)〉 dx

=

∫

〈ω, [d∗c , σN ](φ ∗K)〉 dx −→ 0 as N → ∞,

again by dominated convergence theorem, since horizontal derivatives of any order
of σN vanish as N → ∞ and φ ∗K ∈ L∞(Hn) by Lemma 3.3. We conclude that
〈d∗cdc∆

−1
H,hω|φ〉 = 0 for all test forms, hence d∗cdc∆

−1
H,hω = 0.

�

5. Gagliardo-Nirenberg inequalities

The following is the core estimate of the paper. It provides primitives for globally
defined dc-closed L

1 forms, under an extra assumption on the vanishing of averages.
This assumption is necessary. Indeed, it is obviously satisfied for forms admitting
a compactly supported primitive. The extension to L1 primitives is not hard, see
Lemma 6.3. The case of forms admitting an Lq primitive for some q > 1 is more
subtle, we refer to [43].

The starting point is the collection of Gagliardo-Nirenberg inequalities proven
in [3].

Theorem 5.1 ([3], Theorem 1.6). Let u be a compactly supported Rumin (h− 1)-
form on Hn. Assume that d∗cu = 0. Then

‖u‖LQ/(Q−1)(Hn,Eh−1
0 ) ≤ C‖dcu‖L1(Hn,Eh

0 )
if h 6= n+ 1, 2n+ 1(31)

‖u‖LQ/(Q−2)(Hn,En
0 ) ≤ C‖dcu‖L1(Hn,En+1

0 ) if h = n+ 1.(32)

In [3], Theorem 1.6, the first case corresponds to statements i), first line (h = 1),
ii) first line (h = 2), iv) fourth line (h = n + 2), iii) (other values of h 6= 2n + 1),
and the second case to statement iv) first line (h = n+ 1).
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Given a dc-closed L1 form ω, one would like to apply Theorem 5.1 to u =
d∗c∆

−1
H,hω, since d

∗
cu = 0. Since u is not compactly supported, a cut-off is necessary,

but this produces error terms which can be estimated thanks to Theorem 3.13,
provided averages vanish.

5.1. Estimate for Hn, n > 1.

Theorem 5.2. Denote by L1
0(H

n, E•
0 ) the subspace of L1(Hn, E•

0 ) of forms with
vanishing average. If n > 1 we have:

i) if h 6= n, n+ 1 and 1 ≤ h < 2n+ 1, then

‖d∗c∆
−1
H,hω‖LQ/(Q−1)(Hn,Eh−1

0 ) ≤ C‖ω‖L1(Hn,Eh
0 ) for all ω ∈ L1

0(H
n, Eh0 ) ∩ ker dc;

ii) if h = n, then

‖d∗cdcd
∗
c∆

−1
H,nω‖LQ/(Q−1)(Hn,En−1

0 ) ≤ C‖ω‖L1(Hn) for all ω ∈ L1
0(H

n, En0 ) ∩ kerdc;

iii) if h = n+ 1, then

‖d∗c∆
−1
H,n+1ω‖LQ/(Q−2)(Hn,En

0 ) ≤ C‖ω‖L1(Hn) for all ω ∈ L1
0(H

n, En+1
0 ) ∩ ker dc;

If n = 1, then statement iv) still holds with h = 3.

If n = 1 and h = 1, 2, similar (but slightly different) inequalities are discussed in
Proposition 5.3.

Proof. We notice that, if n > 1, then ∆−1
H,h is a kernel of type 2 or 4 and therefore,

as we pointed out in (28), if ω ∈ L1
0(H

n, Eh0 ), then ∆−1
H,hω is well defined and

belongs to L1
loc(H

n, Eh0 ) for 1 ≤ h ≤ 2n+ 1. Thus we can consider the convolution

operator ω 7→ d∗c∆
−1
H,hω that is associated with a kernel of type 1 if h 6= n, n + 1

and of type 2 if h = n + 1. Analogously, if h = n, then the convolution operator
ω → d∗cdcd

∗
c∆

−1
H,hω is associated with a kernel of type 1.

If N ∈ N, let now χN be a cut-off function supported in B(e, 2N), χN ≡ 1 on
B(e,N). If ǫ < 1 let Jǫ be an usual Friedrichs’ mollifier (for the group structure).
Then, set

(33) vǫ,N := Jǫ ∗ d
∗
c(χN∆−1

H,hω) if h 6= n,

while

(34) vǫ,N := Jǫ ∗ d
∗
c(χNdcd

∗
c∆

−1
H,hω) if h = n.

Notice now that both d∗c(χN∆−1
H,hω) if h 6= n, and d∗c(χNdcd

∗
c∆

−1
H,hω) if h = n are

compactly supported and uniformly bounded in L1(Hn, Eh−1
0 ). Indeed, in the first

case we can write

d∗c(χn∆
−1
H,hω) = χN(d

∗
c∆

−1
H,hω) + [d∗c , χN ]∆−1

H,hω,

and both terms on the right hand side are bounded in L1(Hn, Eh−1
0 ) by Lemmata

4.1 and 4.7. An analogous argument can be carried out in case h = n, keeping in
mind that d∗c is an operator of order 1 and dcd

∗
c∆

−1
H,h is associated with a kernel of

type 2.
We observe that

d∗cvǫ,N = Jǫ ∗ (d
∗
c)

2(χN∆−1
H,hω) = 0,

if h 6= n. In case h = n,

d∗cvǫ,N = Jǫ ∗ (d
∗
c)

2(χNdcd
∗
c∆

−1
H,hω) = 0
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again.
Let us prove sentences i) and iii) simultaneously. To avoid cumbersome notations,

in the sequel when Lp-spaces are involved, we shall drop the target spaces. We apply
Theorem 5.1 to vǫ,N .

‖vǫ,N‖LQ/(Q−1)(Hn,Eh−1
0 ) ≤ C‖dcvǫ,N‖L1(Hn)

= C‖Jǫ ∗ dcd
∗
c(χN∆−1

H,hω)‖L1(Hn)

≤ C
{

‖Jǫ ∗ [dcd
∗
c , χN ](∆−1

H,hω)‖L1(Hn) + ‖Jǫ ∗ χN (dcd
∗
c∆

−1
H,hω)‖L1(Hn)

}

≤ C
{

‖[dcd
∗
c , χN ](∆

−1
H,hω)‖L1(Hn) + ‖χN(dcd

∗
c∆

−1
H,hω)‖L1(Hn)

}

.

(35)

If h = n + 1, then (35) still holds provided we replace ‖vǫ,N‖LQ/(Q−1)(Hn,En
0 ) with

‖vǫ,N‖LQ/(Q−2)(Hn,En
0 ).

By Lemma 4.10,

(36) dcd
∗
c∆

−1
H,hω = ω − d∗cdc∆

−1
H,hω = ω.

By Lemma 4.1, [dcd
∗
c , χN ] can be written as a sum of terms of the form P hj (W

k)
with j = 0, 1, j + k = 2 if h 6= n+ 1, and with j = 0, 1, 2, 3, j + k = 4 if h = n+ 1.
By Proposition 3.2, ii), in both cases the norm ‖[dcd∗c , χN ](∆

−1
H,hω)‖L1(Hn) can be

estimated by a sum of terms of the form

1

Nk

∫

B(e,2N)\B(e,N)

∣

∣Kω
∣

∣ dx,

where K is a kernel of type k ≥ 1. Thus, we can apply Theorem 3.13 to conclude
that

‖[dcd
∗
c , χN ](∆−1

H,hω)‖L1(Hn) −→ 0 as N → ∞.

If ǫ→ 0, then vǫ,N → d∗c(χN∆−1
H,hω) in L

1(Hn, Eh−1
0 ) (and therefore we may assume

a.e.). By Fatou’s theorem, this provides an LQ/(Q−1) bound on d∗c(χN∆−1
H,hω). Since

d∗c(χN∆−1
H,hω) = χN (d∗c∆

−1
H,hω) + [d∗c , χN ]∆−1

H,hω,

as N tends to ∞, this converges a.e. to d∗c∆
−1
H,hω. By Fatou again,

‖d∗c∆
−1
H,hω‖LQ/(Q−1)(Hn) ≤ C‖ω‖L1(Hn).

This completes the proof of i) and iii). Finally, the proof of ii) can be carried
out through the same argument, provided we keep in mind Lemma 4.9-i) in order
to obtain that dcd

∗
cdcd

∗
c∆

−1
H,hω = ω. �

5.2. The case of H1. When n = 1 and h = 1 or 2, the statement and the proof
are slightly different, due to the fact that ∆−1

H,h in degrees h = 1, 2 has a logarithmic

behavior, since the order of ∆H,h equals the homogeneous dimension Q = 4 (see
Theorem 4.4, ii)). Incidentally, if h = 0 or h = 3 the order of ∆H,h is 2 < Q and
there is no difference from the case n > 1.

If h = 1, 2, the way to circumvent this obstacle is to avoid mentioning ∆−1
H,h

and focus on d∗c∆
−1
H,h which is still given by convolution with a kernel of type

2 or 3. Indeed, suppose first ω ∈ L1(H1, Eh0 ), is compactly supported. Then,
keeping in mind that K ∈ L1

loc, by Theorem 4.4, ii) again, we obtain that ∆−1
H,hω ∈

L1
loc(H

1, Eh0 ) (therefore it is a distribution), and we can write

(37) d∗c∆
−1
H,hω =: ω ∗ K̃,
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where (keeping in mind Proposition 3.2) K̃ is a kernel of type 3 if h = 1 and of
type 2 if h = 2.

Proposition 5.3. Assume that h = 1 or 2 and n = 1. Let K̃ the convolution
operator associated with the kernel K̃. Let ω ∈ L1(H1, Eh0 ) without any support

assumption, then K̃ω ∈ L1
loc(H

1, Eh0 ),
(38)

‖d∗cdcK̃ω‖LQ/(Q−1)(H1,E0
0)

≤ C‖ω‖L1(H1,E1
0)

for all ω ∈ L1
0(H

1, E1
0) ∩ ker dc;

and

(39) ‖K̃ω‖LQ/(Q−2)(H1,E1
0)

≤ C‖ω‖L1(Hn,E2
0)

for all ω ∈ L1
0(H

1, E2
0 ) ∩ ker dc;

Proof. Let us prove for instance (39). The proof is a mere reformulation of that of
Theorem 5.2.

Take ω ∈ L1
0(H

1, E2
0) ∩ kerdc. First of all, we want to show that

(40) dcK̃ω = ω and d∗cKω = 0.

To this end, we take a sequence (ωN )N∈N of compactly supported forms con-
verging to ω in L1(H1, E2

0). It is easy to see that

d∗c∆
−1
2 ωN = K̃ωN → K̃ω in L1

loc(H
1, E1

0) as N → ∞,

and hence K̃ωN → K̃ω in D′(H2, E1
0) together with all their derivatives. In partic-

ular

(41) d∗cK̃ω = lim
N→∞

d∗cd
∗
c∆

−1
2 ωN = 0.

By Lemma 4.10 (and keeping in mind Remark 3.12) for all φ ∈ D(H2, E3
0), so

that

lim
N→∞

〈d∗cdcd
∗
cdc∆

−1
2 ωN |φ〉 := lim

N→∞
〈∆−1

2 ωN |d∗cdcd
∗
cdcφ〉

= lim
N→∞

〈ωN |∆−1
2 d∗cdcd

∗
cdcφ〉 = lim

N→∞
〈ωN |d∗c∆

−1
2 dcd

∗
cdcφ〉.

On the other hand, since d∗c∆
−1
2 is a kernel of type 2 and hence d∗c∆

−1
2 dcd

∗
cdcφ ∈

L∞(H2, E3
0),

lim
N→∞

〈ωN |d∗c∆
−1
2 dcd

∗
cdcφ〉 = 〈u|d∗c∆

−1
2 dcd

∗
cdcφ〉 = 0

i.e.

lim
N→∞

〈d∗cdcd
∗
cdc∆

−1
H,hωN |φ〉 = 0.(42)

Therefore, by Theorem 4.4, iv) there exists a left invariant form β = β(φ) such that

〈dcK̃u|φ〉 = lim
N→∞

〈dcK̃ωN |φ〉 = lim
N→∞

〈dcd
∗
c∆

−1
2 ωN |φ〉

= lim
N→∞

〈(dcd
∗
c + (d∗cdc)

2)∆−1
2 ωN |φ〉 = lim

N→∞
〈∆2∆

−1
2 ωN |φ〉

= lim
N→∞

〈ωN |∆−1
2 ∆2φ〉 (by Remark 3.12)

= lim
N→∞

〈ωN |φ+ β〉 = 〈ω|φ+ β〉 = 〈ω|φ〉,

i.e. dcK̃ω = ω. Thus, the proof can be completed arguing basically as in the proof
of Theorem 5.2. More precisely, let χN be a cut-off function supported in B(e, 2N),
χN ≡ 1 on B(e,N). If Jǫ is an usual Friedrich’s mollifier for ǫ < 1, let us consider

vǫ,N := Jǫ ∗ χN (K̃ω)
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(notice the slight difference from (33), due to the fact that we cannot split K̃ as

d∗c∆
−1
2 ). As in Theorem 5.2, vǫ,N ∈ D(H1, E1

0) and vǫ,N → χN (K̃u) in L1(H1, E1
0)

(and therefore we may assume a.e.) as ǫ → 0. If we apply the estimates of [3],
Theorem 1.3 - iv) and (40) above, we get (to avoid cumbersome notations, when
Lp-spaces are involved, we shall drop the target spaces):

‖vǫ,N‖LQ/(Q−2)(H1) ≤ C
{

‖dcvǫ,N‖L1(H1) + ‖dcd
∗
cvǫ,N‖L1(H1)

}

= C
{

‖Jǫ ∗ dcχN (K̃ω)‖L1(H1) + ‖Jǫ ∗ dcd
∗
c(χN (K̃ω))‖L1(H1)

}

≤ C
{

‖dcχN(K̃ω)‖L1(H1) + ‖dcd
∗
c(χN (K̃ω))‖L1(H1)

}

≤ C
{

‖χNω‖L1(H1) + ‖[dc, χN ](K̃ω)‖L1(H1)

+ ‖[dcd
∗
c , χN ](K̃ω)‖L1(H1)

}

≤ C
{

‖u‖L1(H1) + ‖[dc, χN ](K̃ω)‖L1(H1) + ‖[dcd
∗
c , χN ](K̃ω)‖L1(H1)

}

.

Thus, by Fatou’s lemma

‖χN(K̃ω)‖L1(Hn) ≤ C
{

‖ω‖L1(H1)

+ ‖[dc, χN ](K̃ω)‖L1(H1) + ‖[dcd
∗
c , χN ](K̃ω)‖L1(H1)

}

.

Keep now in mind that K̃ω is a form of degree 1, so that both dc and dcd
∗
c

are horizontal operators of order 2. By Lemma 4.1 the two terms containing the
commutators can be bounded by terms of the form

1

N2

∫

N≤|p|≤2N

∣

∣K̃ω
∣

∣ dp

or by a sum of terms of the form

1

N

∫

N≤|p|≤2N

∣

∣WℓK̃ω
∣

∣ dp.

Thus we can conclude obtaining (38) again by Fatou’s lemma and Theorem 3.13.
�

Once Theorem 5.2 and Proposition 5.3 are proved, the proof of Theorem 1.1 is
straightforward:

5.3. Proof of Theorem 1.1. In the Heisenberg case, Theorem 5.2 and Proposition
5.3 provide Lq primitives (with the announced values of q) for dc-closed L

1 forms
with vanishing averages, in all degrees but the top degree. The Euclidean case is
even simpler. This proves Theorem 1.1.

6. Interior inequalities

Interior inequalities are proven in three steps. Applying cut-offs on forms and on
kernels, one first constructs a homotopy K which slightly increases differentiability.
Then Rumin’s homotopy is used to replace Rumin forms with usual differential
forms. Finally, Iwaniec-Lutoborsky’s Euclidean homotopy is applied.
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6.1. The function space L1 ∩ d−1
c L1. A homotopy is an operator K such that

dcK + Kdc equals identity (up to a loss on domain). To make sense of such an
identity, one must restrict to forms α which belong to L1 and such that dcα belongs
to L1 as well.

Lemma 6.1. Let B be a ball in Hn. We set

(L1 ∩ d−1
c L1)(B,E•

0 ) := {α ∈ L1(B,E•
0 ) ; dcα ∈ L1(B,E•+1

0 )},

endowed with the graph norm. Then C∞(B,E•
0 ) is dense in (L1 ∩ d−1

c L1)(B,E•
0 ).

Proof. Take u ∈ (L1 ∩ d−1
c L1)(B,E•

0 ). If u is compactly supported, then it can be
approximated by convolution with Friedrichs’ mollifiers Jǫ for the structure of the
group, since dc(Jǫ ∗ u) = Jǫ ∗ dcu. The proof of the statement for non-compactly
supported forms can be carried out by mimicking verbatim the classical Meyers-
Serrin’s proof (see [41], Theorem 1.3.3, and [21]).

�

Lemma 6.2. Let B be a ball in Hn. Set K = d∗c∆
−1
H

if n > 1 and, if n = 1 is
defined by (37). If

(43) K0 := K in degree h 6= n and K0 := d∗cdcK in degree h = n.

Then:

• K0 is a kernel of type 1 on forms of degree h, h 6= n + 1 and of type 2 if
h = n+ 1;

• if χ is a smooth function with compact support in B, then the identity

χ = dcK0χ+K0dcχ

holds on the space (L1 ∩ d−1
c L1)(B,E•

0 ).

Proof. If h 6= n− 1, n, n+1 and D(Hn, E•
0 ), then, by Theorem 4.4 and Lemma 4.9,

i),

u = dcd
∗
c∆

−1
H
u+ d∗cdc∆

−1
H
u = dcd

∗
c∆

−1
H
u+ d∗c∆

−1
H
dcu

= dcKu+Kdcu.

If h = n− 1, then

u = dcd
∗
c∆

−1
H
u+ d∗cdc∆

−1
H
u = dcd

∗
c∆

−1
H
u+ d∗cdcd

∗
c∆

−1
H
dcu

= dcKu+ d∗cdcKdcu.

If h = n, then

u = (dcd
∗
c)

2∆−1
H
u+ d∗cdc∆

−1
H
u = (dcd

∗
c)

2∆−1
H
u+ d∗c∆

−1
H
dcu

= dcd
∗
cdcKu+ d∗cKdcu.

Finally, if h = n+ 1, then

u = dcd
∗
c∆

−1
H
u+ d∗cdcd

∗
cdc∆

−1
H
u = dcd

∗
c∆

−1
H
u+ d∗c∆

−1
H
dcu

= dcKu+Kdcu.

In other words, with notations of (43), for any h we can write

u = dcK0u+K0dcu,

where K0 is a kernel of type 1 when it acts on forms of degree h, h 6= n+ 1 and of
type 2 if h = n+ 1,
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Take now u ∈ (L1 ∩ d−1
c L1)(B,Eh0 ), 0 ≤ h ≤ 2n+ 1. By Lemma 6.1 the exists a

sequence (uN)N∈N of smooth h-forms on B such that

uN −→ u in L1(Hn, Eh0 ) as N → ∞.

and

dcuN −→ dcu in L1(Hn, Eh+1
0 ) as N → ∞.

Obviously

χuN = dcK0(χuN ) +K0dc(χuN) for all N ∈ N.

Since χuN → χu in L1(Hn, Eh0 ) asN → ∞, thenK0(χuN ) → K0(χu) in L
1(B,Eh−1

0 ),
and dcK0(χuN) → dcK0(χu) in the sense of distributions. Let us consider now

K0dc(χuN ) = K0(χdcuN + [dc, χ]u). Obviously, χdcuN → χdcu in L1(Hn, Eh+1
0 )

as N → ∞, and then K0(χdcuN) → K0(χdcu) in L
1(B,Eh0 ).

Let us consider the termK0[dc, χ]uN . If h 6= n, then, by Lemma 4.1, [dc, χ]uN →
[dc, χ]u in L1(Hn, Eh0 ) and we can conclude as above. Thus we are left with the
case h = n. By Lemma 4.1, [dc, χ]u can be written as a sum of terms of the form
(WiWjχ)uN and of the form Wj{(Wiχ)(uN )ℓ}, where (uN )ℓ is the ℓ-th component
of uN . The terms of the form (WiWjχ)uN can be handled as above. On the other
hand, K0Wj is a kernel of type 1, and, again, (Wiχ)(uN )ℓ → (Wiχ)uℓ in L1(Hn)
and we can conclude as above. �

6.2. A local smoothing homotopy. It is obtained by cutting off the global in-
verse of dc provided in Section 5. This operator can be applied only to global forms
whose averages vanish. Therefore we begin by checking that averages vanish for
dc-exact forms.

Lemma 6.3 (see [6], Remark 2.16). Let ψ ∈ L1(Hn, Eh0 ) be a compactly supported

form with dcψ ∈ L1(Hn, Eh+1
0 ), and let ξ ∈

∧2n−h
be a left-invariant invariant

form. Then
∫

Hn

dcψ ∧ ξ = 0.

Proof. By [6], identity (16), we have

dcψ ∧ ξ = dcψ ∧ (ΠE0ξ),

so that we can assume that ξ ∈ E2n−h
0 (and ξ is still a “constant coefficient form”).

Moreover, by Lemma 6.1, we can assume that ψ ∈ D(Hn, Eh0 ). Thus we can
conclude by Remark 2.16 in [6]. �

Proposition 6.4. Let B ⋐ B′ be concentric balls in Hn. For h = 1, . . . , 2n, let
q = Q/(Q − 1) if h 6= n + 1 and q = Q/(Q − 2) if h = n + 1. For every s ∈ N,

there exists a smoothing operator S : L1(B′, Eh0 ) → W s,q(B,Eh−1
0 ) and a bounded

operator T : L1(B′, Eh0 ) ∩ d−1
c (L1(B′, Eh+1

0 )) to Lq(B,Eh−1
0 ), and such that, for

L1-forms α on B′ such that dcα ∈ L1,

α = dcTα+ Tdcα+ Sα on B.

In particular, dcS = Sdc on L1 ∩ d−1
c L1. Furthermore, there exist r > 0 and

p > 1 such that for all s ≥ 0, T extends to a bounded operator L1(B′, Eh0 ) →
W r,p(B,Eh−1

0 ) and W s,p(B′, Eh0 ) → W s+1,p(B,Eh−1
0 ). In degree n + 1, if W is a

horizontal derivative, WT extends to a bounded operator L1(B′, En0 ) →W r,p(B,En0 )
and W s,p(B′, En0 ) → W s+1,p(B,En0 ).
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Finally, T and S merely enlarge by a small amount the support of differential
forms.

Proof. Le us fix two balls B0, B1 with

(44) B ⋐ B0 ⋐ B1 ⋐ B′,

and a cut-off function χ ∈ D(B1), χ ≡ 1 on B0. If α ∈ (L1 ∩ d−1
c )(B′, E•

0 ), we
set α0 = χα, continued by zero outside B1. Denote by k0 the kernel associated
with K0 in Lemma 6.2. We consider a cut-off function ψR supported in a R-
neighborhood of the origin, such that ψR ≡ 1 near the origin. Then we can write
k0 = k0ψR+(1−ψR)k0 Let us denote by K0,R the convolution operator associated
with ψRk0. By Lemma 6.2,

α0 = dcK0α0 +K0dcα0

= dcK0,Rα0 +K0,Rdcα0 + S0α0,
(45)

where S0 is defined by

S0α0 := dc((1 − ψR)k0 ∗ α0) + (1− ψR)k0 ∗ dcα0.

We set

T1α := K0,Rα0, S1α := S0α0.

Since the kernel ψRk0 ∈ L1, K0,R maps L1 to L1.
If β ∈ L1(B1), we set

T1β := K0,R(χβ)∣
∣

B

, S1α := S0α0
∣

∣

B

.

We notice that, provided R > 0 is small enough, the values of T1β do not depend
on the continuation of β outside B1. Moreover

K0,Rdcα0
∣

∣

B

= K0,Rdc(χα)∣
∣

B

= K0,R(χdcα)∣
∣

B

= T1(dcα),

since dc(χα) ≡ χdcα on B0. Thus, by (45),

α = dcT1α+ T1dcα+ S1α in B.

Write φ = T1α ∈ L1(B0). By difference, dcφ = α− S1α− T1dcα ∈ L1(B0).
Unfortunately, so far one cannot assert that φ ∈ Lq(B0) and we must in some

sense “iterate” the argument. Let us sketch how this iteration will work: let ζ be a
cut-off function supported in B0, identically equal to 1 in a neighborhood U of B,
and set ω = dc(ζφ). Obviously, the form ζφ (and therefore also ω) are defined on
all Hn and are compactly supported in B0. In addition, ω is closed. Suppose for a
while we are able to prove that

a) ω ∈ L1(Hn);
b) ‖K0,Rω‖Lq(Hn) ≤ C‖α‖L1(B′) for some q > 1,

and let us show how the argument can be carried out (here and in the sequel of the
proof, to avoid cumbersome notations, when Lp-spaces are involved, we drop the
target spaces).

First we stress that, if R is small enough, then when x ∈ B, K0,Rω(x) depends
only on the restriction of dcφ to U , so that the map

α → K0,Rω
∣

∣

B

is linear.
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Notice that ω = χω, so that, by (45),

dc(ζφ) = ω = dcK0,Rω + S0ω.

Therefore in B

α− S1α− T1dcα = dcφ = dc(ζφ) = dcK0,Rω + S0ω,

and then in B

α = T1dcα+ dc(K0,Rω
∣

∣

B
) + S1α

∣

∣

B
+ S0ω

∣

∣

B

= T1dcα+ dc(K0,R(χω)
∣

∣

B
) + Sα

=: T̄ dcα+ dcTα+ Sα.

First notice that the map α → ω = ω(α) is linear, and hence T̄ , T and S are
linear maps. In addition, by b),

‖Tα‖Lq(B) ≤ ‖K0,R(χω)‖Lq(Hn) = ‖K0,R(ω)‖Lq(Hn) ≤ C (‖α‖L1(B′) + ‖dα‖L1(B′)).

As for the map α → Sα we have just to point out that, when x ∈ B, Sα(x) can
be written as the convolution of α0 with a smooth kernel with bounded derivatives
of any order.

We observe that the cut-offs χ, ζ have no influence on the restriction of Tα or T̄α
to B. Therefore T and T̄ coincide as bounded operators L1(B′) ∩ d−1

c (L1(B′)) →
Lq(B).

Thus we are left with the proof of a) and b). To this end, we must deal separately
with the case when degree of ω equals n+ 1.

With our previous notations, if the degree of φ is different from n (i.e. if the
degree of ω is different from n+ 1), then [dc, ζ] is a linear operator of order 0 with
coefficients compactly supported in B0. Therefore

ω = ζdcφ+ [dc, ζ]φ ∈ L1(Hn).

Thus, we can apply Lemma 6.3 to ψ := ζφ and we conclude that

ω ∈ L1
0(H

n) ∩ ker(d).

Therefore, by Theorem 5.2, K0ω ∈ Lq(Hn), where q = Q/(Q− 1). Let us prove
that the same assertion holds for K0,Rω and hence φ ∈ Lq(B′). In fact,

K0,Rω(x) = K0ω(x) + (ψR − 1)k0 ∗ ω(x)

= K0ω(x) +

∫

Hn

(ψR − 1)k0(y
−1x)ω(y) dy.

Notice now that (ψR−1)k0 is a smooth function and that y−1x lies in a compact
set when x ∈ B′ (since ω is compactly supported). Thus

‖(ψR − 1)k0 ∗ ω‖Lq(B′) ≤ C ‖(ψR − 1)k0‖Lq(B′)‖ω‖L1(B′) ≤ C′ ‖ω‖L1(B′).

Suppose now the degree of φ equals n.
Then, by Lemma 4.1 [dc, ζ], is the sum of a linear operator P0(W

2ζ) of order 0
with coefficients compactly supported in B0, and of a linear operator P1(Wζ) of
order 1 with coefficients compactly supported in B0. As above,

ω = ζdcφ+ [dc, ζ]φ = ζdcφ+ P0(W
2ζ)φ+ P1(Wζ)φ.

Again
ζdcφ+ P0(W

2ζ)φ ∈ L1(Hn).
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Notice now that, if φ has degree n, then

P1(Wζ)φ = P1(Wζ)K0,R(χα).

But α has degree n + 1, so that, by Lemma 6.2, it is associated with a kernel of
type 2. Thus, by Lemma 3.10 and Corollary 3.8, and keeping in mind that the
coefficients of P1 are compactly supported in B0

P1(Wζ)φ ∈ L1(Hn),

so that again

ω ∈ L1(Hn)

and

(46) ‖ω‖L1(Hn) ≤ C‖α‖L1(B′).

Again, we can apply Lemma 6.3 to ψ := ζφ and we conclude that

ω ∈ L1
0(H

n) ∩ ker(d).

This proves a). On the other hand, by Theorem 5.2, K0ω ∈ Lq(Hn), where q =
Q/(Q − 2). Arguing as above, the same assertion holds for K0,Rω and b) follows
keeping in mind (46).

We observe that Tω = K0,R(χω), where K has compactly supported kernel
ψRk0, with k0 of type 1 (resp. type 2 if h = n+ 1). If h 6= n+ 1, Lemma 3.26 and
Theorem 3.27 apply. If h = n+ 1,

WTω =W (χω ∗ ψRk0) = χω ∗W (ψRk0)(47)

= χω ∗ (WψR)k0 + χω ∗ ψR(Wk0).(48)

Lemma 3.26 and Theorem 3.27 apply to both terms. They provide an r > 0 and
a p > 1 such that T (resp. WT ) maps L1(Hn) to W r,p

loc (H
n) and W s,p(Hn) to

W s+1,p
loc (Hn).

�

6.3. Composition of homotopies. This is the final step which provides an in-
verse to dc on dc-closed L

1 forms defined on a ball, as stated in Theorem 1.2.

Corollary 6.5 (Interior Poincaré and Sobolev inequalities). Let B ⋐ B′ be concen-
tric balls in Hn. For h = 1, . . . , 2n, let q = Q/(Q−1) if h 6= n+1 and q = Q/(Q−2)
if h = n+1. For every dc-closed h-form α ∈ L1(B′, Eh0 ), there exists an h−1-form

φ ∈ Lq(B,Eh−1
0 ), such that

dcφ = α|B and ‖φ‖Lq(B,Eh−1
0 ) ≤ C ‖α‖L1(B′,Eh

0 )
.

Furthermore, if α is compactly supported, so is φ.

Proof. Proposition 6.4 allows to replace α with Sα whose first 3 derivatives, in L2

norm, are controlled by ‖α‖1. Then β = ΠE(Sα) and its 2 first derivatives are
controlled by ‖α‖1, and dβ = 0. Apply Iwaniec-Lutoborski’s homotopy [25] to get
a differential (h − 1)-form γ on B such that dγ = β and with 2 first derivatives
controlled by ‖α‖1 in L2 (IL’s homotopy is an operator of type 1). The Euclidean
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Sobolev inequality implies that ‖γ‖q is controlled by ‖α‖1, for q = Q/(Q − 2). A
fortiori, for q = Q/(Q− 1). So is ‖φ‖q, where φ = ΠE0γ satisfies

dcφ = ΠE0dΠEΠE0γ

= ΠE0dγ

= ΠE0ΠESα

= Sα.

This proves the interior Poincaré inequality.
Allowing S to win 4 derivatives instead of 3 provides a control on the W 2,p

norm of β for some p > 1. This allows to replace Iwaniec-Lutoborski’s homo-
topy [25] with Mircea-Mircea-Monniaux’ homotopy [31] which preserves compactly
supported forms. When α is compactly supported, so are Sα, β, the primitive γ
provided by Mircea-Mircea-Monniaux, and φ. This proves a Sobolev inequality. �

Remark 6.6. Without loss of generality, in Corollary 6.5 we can assume that
d∗cφ = 0, provided we replace B by a smaller ball B̃ ⋐ B. Indeed, let ψ be a cut-off

function, ψ ≡ 1 on B̃ and supp ψ ⊂ B. Set

φ̃ := d∗cdc∆
−1
H

(ψφ).

Obviously, d∗c φ̃ = 0. Since d∗cdc∆
−1
H

is associated with a kernel of type 0 and q > 1,
we have

‖φ̃‖Lq(B̃,Eh−1
0 ) ≤ ‖φ̃‖Lq(Hn,Eh−1

0 )

≤ C‖ψφ‖Lq(Hn,Eh−1
0 ) ≤ C‖φ‖Lq(B,Eh−1

0 ) ≤ C‖α‖Lq(B′,Eh
0 ).

Notice now that

ψφ = dcd
∗
c∆

−1
H

(ψφ) + d∗cdc∆
−1
H

(ψφ) = dcd
∗
c∆

−1
H

(ψφ) + φ̃.

Thus in B̃

dcφ̃ = dc(ψφ) = dcφ = α.

The following globalization procedure, established for spaces of Lp differential
forms, p > 1, in [5], extends to L1.

7. Bounded geometry Riemannian and contact manifolds

A contact structure on an odd-dimensional manifold M is a smooth distribution
of hyperplanes H which is maximally nonintegrable in the following sense: if θ is
a locally defined smooth 1-form such that H = ker(θ), then dθ restricts to a non-
degenerate 2-form on H , i.e. if 2n+1 is the dimension ofM , then θ∧ (dθ)n 6= 0 on
M (see [30], Proposition 3.41). A contact manifold (M,H) is the data of a smooth
manifold M and a contact structure H on M .

Contact diffeomorphisms are contact structure preserving diffeomorphisms be-
tween contact manifolds.

We recall that, by a classical theorem of Darboux, any contact manifold (M,H)
is locally contact diffeomorphic to the Heisenberg group Hn (see [30], p. 112).

We recall that the construction of Rumin’s complex can be carried out for general
contact manifolds (see, e.g. [38], [39]) yielding a complex of differential forms - still
denoted by (E•

0 , dc) - such that

i) d2c = 0;
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ii) the complex (E•
0 , dc) is homotopically equivalent to the de Rham complex

Ω := (Ω•, d). Thus, if D ⊂ Hn is an open set, unambiguously we write
Hh(D) for the h-th cohomology group;

iii) dc : Eh0 → Eh+1
0 is a homogeneous differential operator in the horizontal

derivatives (i.e. derivatives along H) of order 1 if h 6= n, whereas dc : E
n
0 →

En+1
0 is an homogeneous differential operator of order 2 in the horizontal

derivatives.

Moreover, if φ is a contactomorphism from an open set U ⊂ Hn to M , and we
denote by V the open set V := φ(U), we have

i) φ#E•
0 (V) = E•

0 (U);
ii) dcφ

# = φ#dc.
iii) if ζ is a smooth function in M , then the differential operator in U ⊂ Hn

defined by v → φ#[dc, ζ](φ
−1)#v is a differential operator of order zero if

v ∈ Eh0 (U), h 6= n and a differential operator of order 1 if v ∈ En0 (U)

(see [5], Proposition 3.11).

If a Riemanniam metric g is defined on H , we refer to the (M,H, g) as to a
sub-Riemannian contact manifold.

In turn, in any sub-Riemannian contact manifold (M,H, g) we can define a sub-
Riemannian distance dM (see e.g. [32]) inducing on M the same topology of M
as a manifold. In particular, Heisenberg groups can be viewed as sub-Riemannian
contact manifolds. If we choose on the contact sub-bundle of Hn a left-invariant
metric, it turns out that the associated sub-Riemanian metric is left-invariant, too.

7.1. Bounded geometry and controlled coverings. We give now the definition
of Riemannian manifold of bounded geometry as well as the definition of contact
manifold of bounded geometry.

Definition 7.1. Let k be a positive integer and let B(0, 1) denote the unit ball in
Rn. We say that a Riemannian manifold (M, g) has bounded Ck-geometry is there
exist constants r, C > 0 such that, for every x ∈ M , there exists a diffeomorphism
preserving φx : B(0, 1) → M that satisfies

(1) B(x, r) ⊂ φx(B(0, 1));
(2) φx is C-bi-Lipschitz, i.e.

(49)
1

C
|p− q| ≤ dM (φx(p), φx(q)) ≤ C|p− q| for all p, q ∈ B(0, 1);

(3) coordinate changes φx ◦φ−1
y and their first k derivatives are bounded by C.

The counterpart of the above definition for subRiemannian contact manifolds
reads as follows:

Definition 7.2. Let k be a positive integer and let B(e, 1) denote the unit sub-
Riemannian ball in Hn. We say that a subRiemannian contact manifold (M,H, g)
has bounded Ck-geometry is there exist constants r, C > 0 such that, for every
x ∈ M , there exists a contactomorphism (i.e. a diffeomorphism preserving the
contact structure) φx : B(e, 1) → M that satisfies

(1) B(x, r) ⊂ φx(B(e, 1));
(2) φx is C-bi-Lipschitz, i.e.

(50)
1

C
d(p, q) ≤ dM (φx(p), φx(q)) ≤ Cd(p, q) for all p, q ∈ B(e, 1);
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(3) coordinate changes φx ◦φ−1
y and their first k derivatives with respect to unit

left-invariant horizontal vector fields are bounded by C.

In [5], Lemma 5.10, we proved the following covering lemma (that is basically
[29], Theorem 1,2). We state it for subRiemannian contact manifolds, but it still
holds in the Riemannian setting.

Lemma 7.3. Let (M,H, g) be a bounded Ck-geometry subRiemannian contact
manifold, where k is a positive integer. Then there exists ρ > 0 (depending only on
the radius r of Definition 7.2) and an at most countable covering {B(xj , ρ)} of M
such that

i) each ball B(xj , ρ) is contained in the image of one of the contact charts of
Definition 7.2;

ii) B(xj ,
1
5ρ) ∩B(xi,

1
5ρ) = ∅ if i 6= j;

iii) the covering is uniformly locally finite. Even more, there exists a N =
N(M) ∈ N such that for each ball B(x, ρ)

#{k ∈ N such that B(xk, ρ) ∩B(x, ρ) 6= ∅} ≤ N.

In addition, if B(xk, ρ) ∩ B(x, ρ) 6= ∅, then B(xk, ρ) ⊂ B(x, r), where
B(x, r) has been defined in Definition 7.2-(2));

iv) all balls B(xk, ρ) have comparable measures.

7.2. Sobolev spaces of Rumin forms on contact manifolds. A key feature
of Rumin’s complex for Heisenberg groups is its invariance under smooth contac-
tomorphisms: if U and V are open subsets of Hn and φ : U → V is a contact
structure preserving diffeomorphism, then φ pulls back Rumin forms. We use the
same notation φ# as for the pull-back of usual differential forms. We use this to de-
fine Sobolev spaces on bounded geometry contact subRiemannian manifolds. They
will be needed in the construction of global smoothing homotopies, Proposition 8.1.

In the Riemannian setting, Sobolev spaces of differential forms are invariant
with respect to the pull-back operator associated with sufficiently smooth diffeo-
morphisms (see, e.g. [41], Lemma 1.3.9). An analogous statement holds for Folland-
Stein Sobolev spaces in Heisenberg groups, provided we restrict ourselves to contact
diffeomorphisms. Indeed we have:

Lemma 7.4. If k is a positive integer, let U, V ⊂ Hn be connected open extension
subsets of Hn (see Definition 3.22). Let U0, V0 be open neighborhoods of U and V ,
respectively, and let φ : U0 → V0 be a Ck-bounded contact diffeomorphism such that
φ(U) ⊂ V . If p > 1 and s is a real number, 0 ≤ s ≤ k − 1 then the pull-back
operator φ# from W s,p(V,E•

0 ) to W s,p(U,E•
0 ) is bounded, and its norm depends

only on the Ck norms of φ and φ−1. This extends to p = 1 if s is an integer.

Proof. Consider the case p > 1. The proof for the case p = 1 is analogous but
shorter, since we do not need interpolation arguments. Let ψ ∈ D(Hn) be a cut-off
function supported in V0, ψ ≡ 1 on V . If u ∈ D(Hn, E•

0 ), then φ
#(rV0(ψu)) is well

defined and supported in U0, so that can be continued by zero outside U0. Denote
by

(

φ#(rV0(ψu))
)

0
this extension. Suppose now u ∈ D(Hn, E•

0 ), and consider the
map

u→ L(u) :=
(

φ#(rV0(ψu))
)

0
.

If s is an integer, by the chain rule and our assumptions on φ

‖
(

φ#(rV0(ψu))
)

0
‖W s,p(Hn,E•

0 )
≤ C‖u‖W s,p(Hn,E•

0 )
.
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Thus, by density and interpolation, L is a bounded linear operator fromW s,p(Hn, E•
0 )

to W s,p(Hn, E•
0 ) for s ≥ 0.

Take now α ∈ W s,p(V,E•
0 ), an let α̃ ∈ W s,p(Hn, E•

0 ) an arbitrary extension of
α outside V . We notice that

(

φ#(rV0(ψα̃)
)

0
is an extension of φ#(α) outside U .

Indeed, if x ∈ U (and therefore φ(x) ∈ V ) and v1, . . . , v• are tangent vectors at x,
we have

(

φ#(rV0 (ψα̃)
)

0
(x)(v1, . . . , v•)

= φ#(rV0 (ψα̃)(x)(v1, . . . , v•)

= rV0(ψα̃)(φ(x))(dφ(x)v1 , . . . , dφ(x)v•)

= ψα̃(φ(x))(dφ(x)v1 , . . . , dφ(x)v•)

= α(φ(x))(dφ(x)v1 , . . . , dφ(x)v•)

= φ#(α)(x)(v1 , . . . , v•).

Then

‖φ#(α)‖W s,p(UE•

0 )
≤ ‖

(

φ#(rV0 (ψα̃)
)

0
‖W s,p(Hn,E•

0 )
. ≤ C‖α̃‖W s,p(Hn,E•

0 )
.

Taking the infimum of the right-hand side of this inequality for all extensions α̃ ∈
W s,p(Hn, E•

0 ) of α, the assertion follows.
�

Definition 7.5. Let k be a positive integer, and let (M,H, g) be a bounded Ck-
geometry subRiemannian contact manifold, and let {χj} be a partition of unity
subordinate to the atlas U := {B(xj , ρ), φxj} of Lemma 7.3. From now on, for the

sake of simplicity, we shall write φj := φxj . We stress that φ−1
j (supp χj) ⊂ B(e, 1).

Fix a ≥ 1, p ≥ 1 and s ∈ R, 0 ≤ s ≤ k − 1. If α is a Rumin differential form on
M , we say that α ∈ ℓa(W s,p)U (M,E•

0 ) if

φ#j (χjα) ∈W s,p(Hn, E•
0 ) for j ∈ N

(notice that φ#j (χjα) is compactly supported in B(e, 1) and therefore can be con-

tinued by zero on all of Hn) and the sequence ‖φ#j (χjα)‖
a
W s,p(Hn,E•

0 )
is summable.

Then we set

‖α‖ℓa(W s,p)U (M,E•

0 )
:=





∑

j

‖φ#j (χjα)‖W s,p(Hn,E•

0 )





1/a

.

Obviously, the same definition can be formulated for bounded Ck-geometry Rie-
mannian manifolds. One recovers global W s,p spaces of Rn and Hn by taking
a = p.

The following result shows that the definition of the Sobolev spaces ℓa(W s,p)U (M,E•
0 )

do not depend on the atlas U . An analogous statement holds in the Riemannian
setting. Therefore, once the proposition is proved, we drop the index U from the
notation for Sobolev norms.

Proposition 7.6. Let k, a, p and s be as above, and let (M,H, g) be a bounded
Ck-geometry subRiemannian contact manifold. If U ′ := {B(yj , ρ

′), φ′yj} is another
atlas of M satisying Definition 7.2 and Lemma 7.3 with the same choice of ρ, and
{χ′

j} is an associated partition of unity, then

ℓa(W s,p)U (M,E•
0 ) = ℓa(W s,p)U ′(M,E•

0 ),
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with equivalent norms.

Proof. Let j ∈ N be fixed, and let (B(xj , ρ), φj) be a chart of U . We can write

χj =
∑

k∈Ij

χ′
kχj ,

where #Ij ≤ N , since, by Lemma 7.3 iii), B(xj , ρ) is covered by at most N balls of
the covering associated with U ′. Thus, by Definition 7.2-(3) and keeping in mind
that suppχ′

k ⊂ B(xj , r) (since 3ρ < r), we have

‖φ#j (χjα)‖W s,p(Hn,E•

0 )
≤

∑

k∈Ij

‖φ#j (χ
′
kχjα)‖W s,p(Hn,E•

0 )

≤ c
∑

k∈Ij

‖φ#j (χ
′
kα)‖W s,p(Hn,E•

0 )

= c
∑

k∈Ij

‖(φjφ
′−1
k )#φ′#k (χ′

kα)‖W s,p(Hn,E•

0 )

≤ c
∑

k∈Ij

‖φ′#k (χ′
kα)‖W s,p(Hn,E•

0 )

≤ cN‖α‖W s,p

U′
(M,E•

0 )
.

A similar inequality holds for a-th powers, since the number of terms in the sum is
bounded. �

8. Smoothing homotopies on bounded geometry (contact) manifolds

8.1. Proof of Theorem 1.3. Here, we piece together local smoothing homotopies
using contact charts and a partition of unity. The formula for the global smoothing
operator S mixes local smoothing operators S and homotopies T , therefore the gain
in differentiability is less than 1. It needs be measured in terms of fractional Sobolev
spaces. Iterating the initial operator allows to gain arbitrarily large numbers of
derivatives.

Proposition 8.1 (Global smoothing homotopies). Let k ≥ 3 be an integer index,
and let M be a subRiemannian contact manifold of dimension 2n+ 1 and bounded
Ck-geometry. For h = 1, . . . , 2n, let q = Q/(Q− 1) if h 6= n+1 and q = Q/(Q− 2)
if h = n + 1. Let 1 ≤ q′ ≤ q. There exist an operator TM on h-forms on M
which is bounded from L1(M,E•

0 ) ∩ d
−1L1(M,E•

0 ) to Lq
′

(M,E•
0 ) and an operator

SM which is bounded from L1(M,E•
0 )∩d

−1L1(M,E•
0 ) to W

k−1,q′ (M,E•
0 ) such that

1 = SM + dcTM + TMdc.

Proof. The global operators SM and TM are obtained in two steps. First, one
transports by charts φj the local operators S and T constructed on Heisenberg
balls in Proposition 6.4 and one pieces them together using a controlled partition
of unity {χj}. Note that the following formulae differ from those of [5], section 7.

Tu :=
∑

j

χj
(

(φ−1
j )#(T (φ#j (u|10Bj

))B′
H
)BH

)

|Bj
,
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Su : =
∑

j

χj
(

(φ−1
j )#(S(φ#j (u|10Bj

))B′
H
)BH

)

|Bj

−
∑

j

[χj , dc]
(

(φ−1
j )#(T (φ#j (u|10Bj

))B′
H
)BH

)

|Bj
.

In these formulae, u is a Rumin form defined globally onM . The chart φj is defined
on the larger Heisenberg ball B′, it maps it into 10Bj. The image of the smaller
Heisenberg ball B′ contains Bj . Therefore T can be applied to the pulled-back form

φ#j (u) and the form Tφ#j (u), which depends only on the restriction of u to 10Bj,
is defined on all of B. Its push-forward to M is defined on Bj . The product of this
form with χj has compact support in Bj . Therefore the sum is locally finite (only
boundedly many terms do not vanish at a given point). In the sequel, the notation
will be abbreviated as

(51) Tu :=
∑

j

χj(φ
−1
j )#Tφ#j (u)

and

(52) Su :=
∑

j

χj(φ
−1
j )#Sφ#j (u)−

∑

j

[χj , dc](φ
−1
j )#Tφ#j (u).

Second, one iterates S, i.e. one sets SM = Sℓ for ℓ large enough.
Given a function space F of forms on the unit Heisenberg ball, let us denote by

ℓa(F ) the space of differential forms ω on M such that the sequence ‖φ#j ω|Bj
‖F

belongs to ℓa.
Since the covering has bounded multiplicity,

ℓ1(L1(M,E•
0 )) = L1(M,E•

0 )

and

ℓ1(L1(M,E•
0 ) ∩ d

−1
c (L1(M,E•

0 ))) = L1(M,E•
0 ) ∩ d

−1
c (L1(M,E•

0 )).

Indeed, let us prove (for instance) the first equality. If N is an upper bound for the
multiplicity of the covering {10Bi}, for every form u,

‖u‖ℓ1(L1(M,E•

0 ))
=

∑

j

‖u|10Bj
‖L1(10Bj ,E•

0 )
≤ N‖u‖L1(M,E•

0 )
.

Let us show that S and T win a bit of differentiability:

• S andT : ℓ1(L1(M,E•
0 )∩d

−1
c (L1(M,E•

0 ))) → ℓ1(W r,p(M,E•
0 )) are bounded

for some r > 0 and some p > 1;
• for all 1 ≤ s ≤ k− 1, S and T : ℓ1(W s−1,p(M,E•

0 )) → ℓ1(W s,p(M,E•
0 )) are

bounded;
• for all 0 ≤ s ≤ k − 1, Tdc and dcT : ℓ1(W s,p(M,E•

0 )) → ℓ1(W s,p(M,E•
0 ))

are bounded.
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First, let us understand local continuity properties. In the expressions for S, T,
dcT and Tdc, we find the following types of terms:

χj(φ
−1
j )#Sφ#j = (φ−1

j )#(χS)φ#j ,(53)

[χj , dc](φ
−1
j )#Tφ#j = (φ−1

j )#([χ, dc]T )φ
#
j ,(54)

χj(φ
−1
j )#Tφ#j = (φ−1

j )#(χT )φ#j ,(55)

χj(φ
−1
j )#Tφ#j dc = (φ−1

j )#(χTdc)φ
#
j ,(56)

χjdc(φ
−1
j )#Tφ#j = (φ−1

j )#(χdcT )φ
#
j ,(57)

where χ = χj ◦ φj . From Theorem 3.19, we know that multiplication by a function
χ ∈ D is a bounded operator on all Sobolev spaces W s,p, with norm depending on
the size of horizontal derivatives of χ only. Since functions χj ◦ φj have uniformly
horizontal bounded derivatives, we can ignore them in the sequel.

Proposition 6.4 takes care of terms of the form S, T , Tdc and dcT . Only [χ, dc]T
remains. If h 6= n + 1, then the commutator has order zero and [χ, dc]T can be
written as a linear combination of components of T multiplied by smooth compactly
supported functions. If h = n + 1, then the commutator has order 1 and [χ, dc]T
can be written as a linear combination of horizontal derivatives composed with
components of T , multiplied by smooth compactly supported functions. Keeping
in mind Theorem 3.19, we can apply Proposition 6.4 in both cases, and conclude
that all types of terms correspond to operators on the Heisenberg ball which are
bounded as required.

By construction, since the covering has bounded multiplicity and derivatives
of cut-offs and charts are controlled uniformly, summing up each type of term
gives bounded operators from ℓ1(L1(M,E•

0 ) ∩ d−1
c (L1)(M,E•

0 )) to ℓ1(Lq(M,E•
0 ))

or to ℓ1(W r,p(M,E•
0 )) for some r > 0 and p > 1, and ℓ1(W s−1,p(M,E•

0 )) →
ℓ1(W s,p(M,E•

0 )) or ℓ
1(W s,p(M,E•

0 )) → ℓ1(W s,p(M,E•
0 )), as announced.

By construction, S+ dcT+Tdc = 1, hence dcS = Sdc.
When iterating, we write Sℓ = 1− dcTℓ−Tℓdc. The recursion formula is Tℓ+1 =

Tℓ +T− dcTℓT− TℓdcT.
Let us show by induction on ℓ that

• Tℓ maps ℓ1(L1(M,E•
0 ) ∩ d−1

c (L1(M,E•
0 ))) to ℓ

1(Lq(M,E•
0 )) and to

ℓ1(W r,p(M,E•
0 )) for some r > 0 and p > 1.

• dcTℓ and Tℓdc are bounded on ℓ1(W s,p(M,E•
0 )) for all s ≤ k− 1 and p > 1.

Note that T1 = T. We have just shown that dcT1 and T1dc are bounded on ℓ1(W s,p)
and T1 maps ℓ1(L1(M,E•

0 ) ∩ d−1
c (L1(M,E•

0 ))) to ℓ
1(Lq(M,E•

0 )). Assume that Tℓ
does as well. The induction formula

dcTℓ+1 = dcTℓ + dcT1 − dcTℓdcT1, Tℓ+1dc = Tℓdc + T1dc − dcTℓT1dc − TℓdcT1dc.

shows that dcTℓ+1 and Tℓ+1dc are bounded on ℓ1(W s,p(M,E•
0 )). This implies that

Tℓ+1 maps ℓ1(L1(M,E•
0 )∩ d

−1
c (L1(M,E•

0 ))) to ℓ
1(Lq(M,E•

0 )) and to ℓ1(W r,p(M,E•
0 ))

for some r > 0 and p > 1, and completes the induction proof. For ℓ larger enough,
SM := Sℓ maps ℓ1(L1(M,E•

0 ) ∩ d
−1
c (L1(M,E•

0 ))) to ℓ
1(W k−1,q(M,E•

0 )).

Finally, if 1 ≤ q′ ≤ q, ℓ1 ⊂ ℓq
′

and Lqloc ⊂ Lq
′

loc, hence

ℓ1(Lq(M,E•
0 )) ⊂ ℓq

′

(Lq
′

(M,E•
0 )) = Lq

′

(M,E•
0 ).
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This completes the proof that TM := Tℓ, ℓ large enough, maps L1(M,E•
0 ) ∩

d−1
c (L1(M,E•

0 )) to L
q′(M,E•

0 ) and SM maps L1(M,E•
0 )∩d

−1
c (L1(M,E•

0 )) toW
k−1,q′(M,E•

0 ).
�

8.2. Application to geometric group theory. According to [37], such smooth-
ing homotopies are the necessary ingredient in order to prove that Rumin’s complex
can be used to compute the ℓq,1-cohomology of a subRiemannian contact manifold.
We shall not define this quasiisometry invariant of groups here, but merely state a
consequence of Theorems 1.1, 1.2 and 1.3 for geometric group theory.

Corollary 8.2 (ℓq,1-cohomology of Heisenberg groups). For h = 0, . . . , 2n, let
q = Q/(Q− 1) if h 6= n+ 1 and q = Q/(Q− 2) if h = n+ 1. Then ℓq,1Hh(Hn) is
finite dimensional.

Proof. [37] asserts that for all subRiemannian contact manifolds M of C3-bounded
geometry, and all q ≥ 1, ℓq,1Hh(M) is isomorphic to the quotient of the space

of dc-closed h-forms by the image of dc on Lq(M,Eh0 ) ∩ d
−1
c (L1(M,Eh−1

0 )). This
applies in particular to M = Hn.

Fix h = 0, . . . , 2n. Let C denote the space of left-invariant Rumin 2n+ 1 − h-
forms on Hn. Integrating closed L1-forms ω against left-invariant forms β defines
a bilinear map

(ω, β) 7→

∫

Hn

ω ∧ β, (L1(Hn, Hh
0 ) ∩ ker(dc))× C → R,

whence a map

I : L1(Hn, Hh
0 ) ∩ ker(dc) → C∗.

Pick dc-closed L
1 forms (ψ1, . . . , ψk) such that (I(ψ1), . . . , I(ψk)) is a basis of its

image.
Let ω be a dc-closed h-form. There exist real numbers λ1, . . . , λk such that

I(ω) =
k

∑

i=1

λiI(ψi).

Then ω0 = ω−
∑k
i=1 λiψi is dc-closed and belongs to L1

0. According to Theorem 5.2,

there exists an h−1-form φ ∈ Lq(Hn, Eh−1
0 ) such that ω0 = dcφ (here, q = Q/Q−1

or Q/Q − 2 depending on h). This shows that the dimension of ℓq,1Hh(Hn) is at
most k. �
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de champs de vecteurs, Progress in Mathematics, vol. 58, Birkhäuser Boston Inc., Boston,
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