A semi-industrial process (800-l fermentor) for lycopene production by mated fermentation of Blakeslea trispora plus (+) and minus (-) strains has been developed. The culture medium was designed at the flask scale, using a program based on a genetic algorithm; and a fermentation process by means of this medium was developed. Fermentation involves separate vegetative phases for (+) and (-) strains and inoculation of the production medium with a mix of both together. Feeding with imidazole or pyridine, molecules known to inhibit lycopene cyclase enzymatic activity, enhanced lycopene accumulation. Different raw materials and physical parameters, including dissolved oxygen, stirring speed, air flow rate, temperature, and pH, were checked in the fermentor to get maximum lycopene production. Typical data for the fermentation process are presented and discussed. This technology can be easily scaled-up to an industrial application for the production of this carotenoid nowadays widely in demand.
Lopez-Nieto MJ, Costa J, Peiro E, Mendez E, Rodriguez-Saiz M, de la Fuente JL, et al. (2004). Biotechnological lycopene production by mated fermentation of Blakeslea trispora. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 66(2), 153-159 [10.1007/s00253-004-1669-4].
Biotechnological lycopene production by mated fermentation of Blakeslea trispora
Cabri W;
2004
Abstract
A semi-industrial process (800-l fermentor) for lycopene production by mated fermentation of Blakeslea trispora plus (+) and minus (-) strains has been developed. The culture medium was designed at the flask scale, using a program based on a genetic algorithm; and a fermentation process by means of this medium was developed. Fermentation involves separate vegetative phases for (+) and (-) strains and inoculation of the production medium with a mix of both together. Feeding with imidazole or pyridine, molecules known to inhibit lycopene cyclase enzymatic activity, enhanced lycopene accumulation. Different raw materials and physical parameters, including dissolved oxygen, stirring speed, air flow rate, temperature, and pH, were checked in the fermentor to get maximum lycopene production. Typical data for the fermentation process are presented and discussed. This technology can be easily scaled-up to an industrial application for the production of this carotenoid nowadays widely in demand.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.