Compact symmetric objects (CSOs) show radio features such as jets, lobes, and hot spots that are contained within the central 1 kpc region of their host galaxy. Thus, they are thought to be among the progenitors of large-scale radio galaxies. A debate regarding whether the CSOs are compact primarily because they are young or because they are surrounded by a dense medium impacting their expansion is ongoing. Until now, attempts to discriminate between the environmental and genuine youthfulness scenarios have been inconclusive. We present a study of three CSOs selected on the basis of their puzzling X-ray absorbing properties in prior Beppo-SAX and/or Chandra X-ray Observatory data. Our new XMM-Newton observations unambiguously confirm the nature of their X-ray absorbers. Furthermore, for the first time, our X-ray data reveal the existence of a population of CSOs with intrinsic hydrogen column density N H > 1023 cm-2 that is different from the population of X-ray unabsorbed CSOs. The two groups appear to be separated in the linear size versus radio power plane. This finding suggests that a dense medium in X-ray obscured CSOs may be able to confine the radio jets. Alternatively, X-ray obscured CSOs could be seen as radio brighter than their unobscured counterparts either because they reside in a dense environment or because they have larger jet powers. Our results help constrain the origin of the X-ray emission and the location and size of the X-ray obscurer in CSOs, and indicate that the environment may play a key role during the initial expansion of a radio source.

The Impact of the Environment on the Early Stages of Radio Source Evolution / Sobolewska, M. and Siemiginowska, A. and Guainazzi, M. and Hardcastle, M. and Migliori, G. and Ostorero, L. and Stawarz, L.. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - ELETTRONICO. - 871:1(2019), pp. 71.1-71.8. [10.3847/1538-4357/aaee78]

The Impact of the Environment on the Early Stages of Radio Source Evolution

Migliori, G.;
2019

Abstract

Compact symmetric objects (CSOs) show radio features such as jets, lobes, and hot spots that are contained within the central 1 kpc region of their host galaxy. Thus, they are thought to be among the progenitors of large-scale radio galaxies. A debate regarding whether the CSOs are compact primarily because they are young or because they are surrounded by a dense medium impacting their expansion is ongoing. Until now, attempts to discriminate between the environmental and genuine youthfulness scenarios have been inconclusive. We present a study of three CSOs selected on the basis of their puzzling X-ray absorbing properties in prior Beppo-SAX and/or Chandra X-ray Observatory data. Our new XMM-Newton observations unambiguously confirm the nature of their X-ray absorbers. Furthermore, for the first time, our X-ray data reveal the existence of a population of CSOs with intrinsic hydrogen column density N H > 1023 cm-2 that is different from the population of X-ray unabsorbed CSOs. The two groups appear to be separated in the linear size versus radio power plane. This finding suggests that a dense medium in X-ray obscured CSOs may be able to confine the radio jets. Alternatively, X-ray obscured CSOs could be seen as radio brighter than their unobscured counterparts either because they reside in a dense environment or because they have larger jet powers. Our results help constrain the origin of the X-ray emission and the location and size of the X-ray obscurer in CSOs, and indicate that the environment may play a key role during the initial expansion of a radio source.
2019
The Impact of the Environment on the Early Stages of Radio Source Evolution / Sobolewska, M. and Siemiginowska, A. and Guainazzi, M. and Hardcastle, M. and Migliori, G. and Ostorero, L. and Stawarz, L.. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - ELETTRONICO. - 871:1(2019), pp. 71.1-71.8. [10.3847/1538-4357/aaee78]
Sobolewska, M. and Siemiginowska, A. and Guainazzi, M. and Hardcastle, M. and Migliori, G. and Ostorero, L. and Stawarz, L.
File in questo prodotto:
File Dimensione Formato  
Sobolewska_2019_ApJ_871_71.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/753997
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact